机械工程 |
|
|
|
|
基于畸变比能全局化策略的应力拓扑优化 |
高云凯( ),马超,刘哲,徐亚男 |
同济大学 汽车学院,上海 201804 |
|
Stress-based topology optimization based on global measure of distort energy density |
Yun-kai GAO( ),Chao MA,Zhe LIU,Ya-nan XU |
School of Automotive Studies, Tongji University, Shanghai 201804, China |
引用本文:
高云凯,马超,刘哲,徐亚男. 基于畸变比能全局化策略的应力拓扑优化[J]. 浙江大学学报(工学版), 2020, 54(11): 2169-2178.
Yun-kai GAO,Chao MA,Zhe LIU,Ya-nan XU. Stress-based topology optimization based on global measure of distort energy density. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2169-2178.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.012
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2169
|
1 |
BENDSOE M P, KIKUCHI N Generating optimal topologies in structural design using a homogenization method[J]. Applied Mechanics and Engineering, 1988, 71 (2): 197- 224
doi: 10.1016/0045-7825(88)90086-2
|
2 |
张焕宇, 郝志勇 飞轮壳结构刚度对机体NVH性能的影响[J]. 浙江大学学报: 工学版, 2013, 47 (2): 261- 266 ZHANG Huan-yu, HAO Zhi-yong Influence of flywheel cover structural stiffness on engine body NVH performance[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (2): 261- 266
|
3 |
焦洪宇, 周奇才, 李文军, 等 基于变密度法的周期性拓扑优化[J]. 机械工程学报, 2013, 49 (13): 132- 138 JIAO Hong-yu, ZHOU Qi-cai, LI Wen-jun, et al Periodic topology optimization using variable density method[J]. Journal of Mechanical Engineering, 2013, 49 (13): 132- 138
doi: 10.3901/JME.2013.13.132
|
4 |
ALLAIRE G, JOUVE F, TOADER A, et al A level-set method for shape optimization[J]. Comptes Rendus Mathematique, 2002, 334 (12): 1125- 1130
doi: 10.1016/S1631-073X(02)02412-3
|
5 |
PICELLI R, TOWNSEND S, BRAMPTON C J, et al Stress-based shape and topology optimization with the level set method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 329: 1- 23
doi: 10.1016/j.cma.2017.09.001
|
6 |
隋允康, 任旭春, 龙连春, 等 基于ICM方法的刚架拓扑优化[J]. 计算力学学报, 2003, 20 (3): 286- 289 SUI Yun-kang, REN Xu-chun, LONG Lian-chun, et al Topological optimization of frame based on ICM method[J]. Chinese Journal of Computational Mechanics, 2003, 20 (3): 286- 289
|
7 |
隋允康, 彭细荣 结构拓扑优化ICM方法的改善[J]. 力学学报, 2005, 37 (2): 190- 198 SUI Yun-kang, PENG Xi-rong The improvement for the ICM method of structural topology optimization[J]. Acta Mechanica Sinica, 2005, 37 (2): 190- 198
|
8 |
隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M]. 北京: 科学出版社, 2013: 80-82.
|
9 |
XIE Y M, STEVEN G P A simple evolutionary procedure for structural optimization[J]. Computers and Structures, 1993, 49 (5): 885- 896
doi: 10.1016/0045-7949(93)90035-C
|
10 |
YOUNG V, QUERIN O M, STEVEN G P, et al 3D and multiple load case bi-directional evolutionary structural optimization (BESO)[J]. Structural Optimization, 1999, 18 (2): 183- 192
doi: 10.1007/s001580050119
|
11 |
WU J, CLAUSEN A, SIGMUND O, et al Minimum compliance topology optimization of shell-infill composites for additive manufacturing[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 326: 358- 375
doi: 10.1016/j.cma.2017.08.018
|
12 |
PICELLI R, VICENTE W M, PAVANELLO R, et al Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads[J]. Finite Elements in Analysis and Design, 2017, 135: 44- 55
doi: 10.1016/j.finel.2017.07.005
|
13 |
占金青, 卢清华, 张宪民 多相材料的连续体结构拓扑优化设计[J]. 中国机械工程, 2013, 24 (20): 2764- 2768 ZHAN Jin-qing, LU Qing-hua, ZHANG Xian-min Topology optimization of continuum structure with multiple materials[J]. China Mechanical Engineering, 2013, 24 (20): 2764- 2768
|
14 |
LE C H, NORATO J A, BRUNS T E, et al Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization, 2010, 41 (4): 605- 620
doi: 10.1007/s00158-009-0440-y
|
15 |
LIU B, GUO D, JIANG C, et al Stress optimization of smooth continuum structures based on the distortion strain energy density[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 343: 276- 296
doi: 10.1016/j.cma.2018.08.031
|
16 |
CHENG G, GUO X ε-relaxed approach in structural topology optimization [J]. Structural Optimization, 1997, 13 (4): 258- 266
doi: 10.1007/BF01197454
|
17 |
BRUGGI M On an alternative approach to stress constraints relaxation in topology optimization[J]. Structural and Multidisciplinary Optimization, 2008, 36 (2): 125- 141
doi: 10.1007/s00158-007-0203-6
|
18 |
HUANG X, XIE Y M Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design, 2007, 43 (14): 1039- 1049
doi: 10.1016/j.finel.2007.06.006
|
19 |
YANG X Y, XIE Y M, STEVEN G P, et al Bidirectional evolutionary method for stiffness optimization[J]. AIAA Journal, 1999, 37 (11): 1483- 1488
doi: 10.2514/2.626
|
20 |
王选, 刘宏亮, 龙凯, 等 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50 (2): 385- 394 WANG Xuan, LIU Hong-liang, LONG Kai, et al Stress-constrained topology optimization based on improved bi-directional evolutionary optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (2): 385- 394
|
21 |
LUO Y, WANG M Y, KANG Z, et al An enhanced aggregation method for topology optimization with local stress constraints[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 31- 41
doi: 10.1016/j.cma.2012.10.019
|
22 |
XIA L, ZHANG L, XIA Q, et al Stress-based topology optimization using bi-directional evolutionary structural optimization method[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 333: 356- 370
doi: 10.1016/j.cma.2018.01.035
|
23 |
隋允康, 铁军 结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化[J]. 工程力学, 2010, 27 (Suppl.2): 124- 134 SUI Yun-kang, TIE Jun The ICM explicitation approach to the structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function[J]. Engineering Mechanics, 2010, 27 (Suppl.2): 124- 134
|
24 |
隋允康, 叶红玲, 彭细荣, 等 连续体结构拓扑优化应力约束凝聚化的ICM方法[J]. 力学学报, 2007, 39 (4): 554- 563 SUI Yun-kang, YE Hong-ling, PENG Xi-rong, et al Stress-constrained topology optimization based on improved bi-directional evolutionary optimization method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39 (4): 554- 563
|
25 |
隋允康, 张学胜, 龙连春 应力约束处理为应变能集成的连续体结构拓扑优化[J]. 计算力学学报, 2007, 24 (5): 602- 608 SUI Yun-kang, ZHANG Xue-sheng, LONG Lian-chun ICM method of the topology optimization for continuum structures with stress constraints approached by the integration of strain energies[J]. Chinese Journal of Computational Mechanics, 2007, 24 (5): 602- 608
|
26 |
宣东海, 隋允康, 铁军, 等 结构畸变比能处理的应力约束全局化的连续体结构拓扑优化[J]. 工程力学, 2011, 28 (10): 1- 8 XUAN Dong-hai, SUI Yun-kang, TIE Jun, et al Continuum structural topology optimization with globalized stress constraint treated by structural distortional strain energy density[J]. Engineering Mechanics, 2011, 28 (10): 1- 8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|