Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (9): 1762-1770    DOI: 10.3785/j.issn.1008-973X.2018.09.017
电气工程     
宽范围输入输出电压LCC谐振变换器的分析设计
刘国梁, 李新, 伍梁, 李振宇, 陈国柱
浙江大学 电气工程学院, 浙江 杭州 310027
Analysis and design-optimization of LCC resonant converter operating under wide range input and output voltage
LIU Guo-liang, LI Xin, WU Liang, LI Zhen-yu, CHEN Guo-zhu
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1139 KB)   HTML
摘要:

文章对电流连续工作模式(CCM)下LCC谐振变换器的工作模态进行了分析,在此基础上采用基波近似法对LCC谐振拓扑进行了简化,推导出LCC谐振变换器的基波纯阻性和基波容性等效电路,建立了与开关频率、负载及变换器增益有关的数学模型.结合模型,提出了宽范围输入输出电压LCC谐振拓扑的设计方法,基于此方法结合一套电源设计指标设计了一组谐振参数.通过仿真验证了所设计的LCC谐振变换器在宽范围输入输出电压条件下可实现全负载范围的软开关,满足设计指标,证明了模型和设计方法具有较高精准度和良好应用价值.

Abstract:

The paper makes a full analysis for the working mode of the LCC resonant converter in the continuous current mode (CCM). On this basis, further researches need to be completed which include analyzing the LCC resonant topology using Fundamental Wave Approximation, deducing its fundamental wave equivalent circuit of pure resistance and capacitive, and building its mathematical model related with the switch frequency, load and convert gain. On the grounds of the model, a design method of LCC resonant converter operating under a wide range input and output voltage is proposed, and a list of resonant parameters is designed for a set of power supplies based on the method. Then, Simulation results demonstrate that the designed LCC resonant converter can achieve the full-load range soft-switching under a wide range of input and output voltage and meet the design specifications. Besides, it proves that the model and the design method have high accuracy and good application value.

收稿日期: 2017-08-14 出版日期: 2018-09-20
CLC:  TM919  
基金资助:

国家自然科学基金资助项目(51177147)

通讯作者: 陈国柱,男,教授,博导.orcid.org/0000-0002-4565-090X.     E-mail: 陈国柱,男,教授,博导.orcid.org/0000-0002-4565-090X.E-mail:gzchen@zju.edu.cn
作者简介: 刘国梁(1994-),男,硕士生,从事软开关高压医疗电源研究.E-mail:lgl774927886@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.

LIU Guo-liang, LI Xin, WU Liang, LI Zhen-yu, CHEN Guo-zhu. Analysis and design-optimization of LCC resonant converter operating under wide range input and output voltage. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1762-1770.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.09.017        http://www.zjujournals.com/eng/CN/Y2018/V52/I9/1762

[1] THIAGO. B. S, JONAS. M, JORGEN. L, et al Automated design of a high-power high-frequency LCC resonant converter for electrostatic precipitators[J]. IEEE Transactions on Industrial Electronics, 2012, 60(11):4805-4819.
[2] 刘军, 郭瑭塘, 何湘宁, 等. 高压变压器寄生电容对串联谐振变换器特性的影响[J]. 中国电机工程学报, 2012, 32(15):16-23 LIU Jun, GUO Tang-tang, HE Xiang-ning, et al. Effects of the parasitic capacitance on characteristics of series resonant converters[J]. Proceedings of the CSEE, 2012, 32(15):16-23
[3] SEVERNS R. P Topologies for three-element resonant converters[J]. IEEE Transactions on Power Electronics, 1992, 7(1):89-98.
[4] ROBERT L, SETIGERWALD. A comparison of half-bridge resonant converter topologies[J]. IEEE Transactions on Power Electronics, 1988, 3(2):174-182.
[5] 于明伟. LCC谐振式脉冲电流源设计[D].哈尔滨:哈尔滨工业大学, 2015. YU Ming-wei. Design of pulsed current power based on LCC resonant converter[D]. Harbin:Harbin Institute of Technology, 2015.
[6] 谭兴, 阮新波. 电感电流断续模式LCC谐振变换器基于模式分界图的优化设计[J]. 中国电机工程学报, 2014, 34(18):2881-2889 TAN Xing, RUAN Xin-bo. Optimal design of LCC resonant converters operating in the discontinuous current mode based on a mode boundary map[J]. Proceedings of the CSEE, 2014, 34(18):2881-2889
[7] 罗廷芳. 基于LCC串并联谐振充电的高压脉冲电源设计[D]. 长沙:湖南大学, 2010. LUO Ting-fang. Design of high voltage pulse power supply based on the LCC series-parallel resonant convert[D]. Changsha:Hunan University, 2010.
[8] LIU J, SHENG L, SHI J, et al. LCC resonant converter operating under discontinuous resonant current mode in high voltage, high power and high frequency applications[C]//200924th Annual IEEE Applied Power Electronics Conference and Exposition. Washington DC:APEC, 2009:1482-1486.
[9] 夏冰, 阮新波, 陈武. 高压大功率场合LCC谐振变换器的分析与设计[J]. 电工技术学报, 2009, 24(5):60-66 XIA Bing, RUAN Xin-bo, CHEN Wu. Analysis and design of LCC resonant converter for high voltage and high power applications[J]. Transactions of China Electrotechnical Society, 2009, 24(5):60-66
[10] 邹家勇. 静电除尘用高压直流LCC谐振变换器研究与设计[D]. 浙江大学, 2010. ZOU Jia-yong. Research and design of high-voltage DC LCC resonant converter used for electrostatic precipitation[D]. Hangzhou:Zhejiang University, 2010.
[11] 石岩. 宽范围输出的三相LCC谐振变换器研究[D]. 哈尔滨:哈尔滨工业大学, 2016. SHI Yan. A wide output range three-phase LCC reasonant converter[D]. Harbin:Harbin Institute of Technology, 2016.
[12] AKRE S, EGAN M. G. Analysis and design of a new three-phase resonant DC-DC converter with a capacitive output filter[C]//200132nd IEEE Annual Power Electronics Specialists Conference. Vancouver:PESC, 2001:277-284.
[13] 张治国, 谢运祥, 袁兆梅. 高频LCC谐振变换器的分析与轨迹控制[J]. 中国电机工程学报, 2011, 31(27):52-58 ZHANG Zhi-guo, XIE Yun-xiang, YUAN Zhao-mei. Analysis and trajectory control of LCC resonant converter for high frequency applications[J]. Proceedings of the CSEE, 2011, 31(27):52-58
[14] HU M, FROHLEKE N, BOCKER J. Frequency/duty cycle control of LCC resonant converter supplying high voltage very low frequency test systems[C]//200913th European Conference on Power Electronics and Applications. Barcelona:EPE, 2009:1-10.
[15] WONG C S, LOO K H, IU H H C, et al. Independent control of multicolor-multistring LED lighting systems with fully switched-capacitor-controlled LCC resonant network[J]. IEEE Transactions on Power Electronics, 2018, 33(5):4293-4305.
[16] HOREN Y, BRONSHTEIN S. Resonant LCC DC-DC converter with boundary control[C]//2016 IEEE International Conference on the Science of Electrical Engineering. Eilat:ICSEE, 2016:1-4.
[17] MAO S, POPOVIC J, RAMABHADRAM R, et al. Comparative study of half-bridge LCC and LLC resonant DC-DC converters for ultra-wide output power range applications[C]//201517th European Conference on Power Electronics and Applications. Geneva:EPE, 2015:1-10.

No related articles found!