机械工程 |
|
|
|
|
稀疏混合不确定变量优化方法及应用 |
张鹏( ),刘晓健*( ),张树有,裘乐淼,伊国栋 |
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027 |
|
Sparse hybrid uncertain variable optimization method and application |
Peng ZHANG( ),Xiao-jian LIU*( ),Shu-you ZHANG,Le-miao QIU,Guo-dong YI |
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China |
引用本文:
张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.03.004
或
http://www.zjujournals.com/eng/CN/Y2019/V53/I3/435
|
1 |
JENSEN H A, MAYORGA F, VALDEBENITO M A Reliability sensitivity estimation of nonlinear structural systems under stochastic excitation: a simulation-based approach[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 289 (1): 1- 23
|
2 |
SESHADRI P, CONTINE P, IACARINO G, et al A density-matching approach for optimization under uncertainty[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305 (15): 562- 578
|
3 |
LIN T P, GEA H C, JALURIA Y A modified reliability index approach for reliability-based design optimization[J]. Journal of Mechanical Design, 2011, 133 (4): 044501
|
4 |
DEB K, GUPTA S, DAUM D, et al Reliability-based optimization using evolutionary algorithms[J]. IEEE Transactions On Evolutionary Computation, 2009, 13 (5): 1054- 1074
doi: 10.1109/TEVC.2009.2014361
|
5 |
SINHA K Reliability-based multi-objective optimization for automotive crashworthiness and occupant safety[J]. Structural and Multidisciplinary Optimization, 2007, 33 (3): 255- 268
|
6 |
姜潮. 基于区间的不确定性优化理论与算法[D]. 长沙: 湖南大学,2008. JIANG Chao. Theories and algorithms of uncertain optimization based on interval [D]. Changsha: Hunan University, 2008.
|
7 |
CHENG J, TANG M Y, LIU Z Y, et al Direct reliability-based design optimization of uncertain structures with interval parameters[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2016, 17 (11): 841- 854
|
8 |
KUNDU A, ADHIKARI S, FRISWELL M I Stochastic finite elements of discretely parameterized random systems on domains with boundary uncertainty[J]. International Journal for Numerical Methods in Engineering, 2014, 100 (3): 183- 221
doi: 10.1002/nme.v100.3
|
9 |
CHENG J, LIU Z Y, TANG M Y, et al Robust optimization of uncertain structures based on normalized violation degree of interval constraint[J]. Computers and Structures, 2017, 182 (1): 41- 54
|
10 |
JIANG C, LI W X, HAN X Structural reliability analysis based on random distributions with interval parameters[J]. Computers and Structures, 2011, 89 (23/24): 2292- 2302
|
11 |
JIANG C, LI W X, HAN X A hybrid reliability approach based on probability and interval for uncertain structures[J]. Journal of Mechanical Design, 2012, 134 (3): 031001
|
12 |
姜潮, 韩旭, 谢慧超. 区间不确定性优化设计理论有方法: 第一版[M]. 北京: 科学出版社, 2017: 22−29.
|
13 |
JIANG C, HAN X, LIU G P A sequential nonlinear interval number programming method for uncertain structures[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197 (49-50): 4250- 4265
doi: 10.1016/j.cma.2008.04.027
|
14 |
张德权, 韩旭, 姜潮, 等 时变可靠性的区间PHI2分析方法[J]. 中国科学: 物理学力学天文学, 2015, 45 (5): 54- 61 ZHANG De-quan, HAN Xu, JIANG Chao, et al The interval PHI2 analysis method for time dependent reliability[J]. SCIENTIA SINICA: Physica, Mechanica and Astronomica, 2015, 45 (5): 54- 61
|
15 |
JIANG C, LU G Y, HAN X, et al A new reliability analysis method for uncertain structures with random and interval variables[J]. International Journal of Mechanics and Materials in Design, 2012, 8 (2): 169- 182
doi: 10.1007/s10999-012-9184-8
|
16 |
HAN X, JIANG C, LIU L X, et al Response-surface-based structural reliability analysis with random and interval mixed uncertainties[J]. Science China Technological Sciences, 2014, 57 (7): 1322- 1334
doi: 10.1007/s11431-014-5581-6
|
17 |
LIM W, JANG J, KIM S, et al Reliability-based design optimization of an automotive structure using a variable uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230 (10): 1314- 1323
doi: 10.1177/0954407015606825
|
18 |
PENG X, LI J Q, JIANG S F Unified uncertainty representation and quantification based on insufficient input data[J]. Structural and Multidisciplinary Optimization, 2017, 56 (6): 1305- 1317
doi: 10.1007/s00158-017-1722-4
|
19 |
PENG X, WU T J, LI J Q, et al Hybrid reliability analysis with uncertain statistical variables, sparse variables and interval variables[J]. Engineering Optimization, 2018, 50 (4): 1- 17
|
20 |
SANKARARAMAN S, MAHADEVAN S Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data[J]. Reliability Engineering and System Safety, 2011, 96 (7): 814- 824
doi: 10.1016/j.ress.2011.02.003
|
21 |
SANKARARAMAN S, MAHADEVAN S Distribution type uncertainty due to sparse and imprecise data[J]. Mechanical Systems and Signal Processing, 2013, 37 (1-2): 182- 198
doi: 10.1016/j.ymssp.2012.07.008
|
22 |
DAVID F F Counterexamples to parsimony and BIC[J]. Annals of the Institute of Statistical Mathematics, 1991, 43 (3): 505- 514
doi: 10.1007/BF00053369
|
23 |
WU J L, ZHANG Y Q, CHEN L P A Chebyshev interval method for nonlinear dynamic systems under uncertainty[J]. Applied Mathematical Modelling, 2013, 37 (6): 4578- 4591
doi: 10.1016/j.apm.2012.09.073
|
24 |
BERNARDO J M, SMITH A F. Bayesian theory [M]. 1st ed. NewYork: JohnWiley & Sons, 1994.
|
25 |
MADSEN H O, KRENK S, LIND N C. Methods of structural safety [M]. 1st ed. Englewood Cliffs: Prentice-Hall, 1986.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|