Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (7): 1362-1368    DOI: 10.3785/j.issn.1008-973X.2020.07.015
机械与能源工程     
中间介质型烟气换热器无量纲材料成本模型
黄凯1,2(),孙志坚1,2,*(),钱文瑛1,2,杨继虎1,2,俞自涛1,3,胡亚才1
1. 浙江大学 热工与动力系统研究所,浙江 杭州 310027
2. 浙江大学 浙江省制冷与低温技术重点实验室,浙江 杭州 310027
3. 浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Dimensionless material cost model of media gas-gas heat exchangers
Kai HUANG1,2(),Zhi-jian SUN1,2,*(),Wen-ying QIAN1,2,Ji-hu YANG1,2,Zi-tao YU1,3,Ya-cai HU1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
3. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1099 KB)   HTML
摘要:

为了优化中间介质型烟气换热器(MGGH)的设计,以换热材料年成本为目标函数,基于换热器设计理论和工程造价理论中的材料成本计算方法,定义换热材料年成本、比性能价格、无量纲材料成本及其他相关的4个无量纲量温度,建立中间介质型烟气换热器成本模型及无量纲成本模型,给出求解该模型的解析法和迭代法. 通过迭代计算求解某电厂中间介质型烟气换热器的设计参数,给出材料选择方案和优化设计方案,优化前后中间介质型烟气换热器的成本理论上约降低5%. 计算得到几种工况下MGGH无量纲关系图,查阅该表所得值与理论计算值误差小于5%.

关键词: 成本模型中间介质型换热器(MGGH)设计计算优化设计迭代计算余热利用    
Abstract:

An annual cost of heat exchanges materials was taken as the objective function based on the heat exchanger design theory and the material cost calculation method theory of engineering cost in order to optimize the design of media gas-gas heat exchangers (MGGH). The annual cost of heat exchangers materials, specific cost performance of materials, dimensionless cost of materials and other four dimensionless temperature numbers were defined. The MGGH cost model and dimensionless cost model were established. Two methods to solve the two models were given: the analytical method and iterative method. The iterative method was applied to optimize the design parameters of a typical MGGH in a power plant. The materials selection scheme and the optimized design parameters scheme were given. The cost of the MGGH was theoretically reduced by about 5% after optimization. A group of dimensionless relationship graphs of MGGH under several working conditions was obtained. The error between the value obtained by referring to those graphs and the theoretical calculation value was less than 5%.

Key words: cost model    media gas-gas heat exchanger (MGGH)    design calculation    optimization design    iterative calculation    waste heat utilization
收稿日期: 2019-07-03 出版日期: 2020-07-05
CLC:  TK 09  
基金资助: 国家重点研发计划资助项目(2016YFC0203704)
通讯作者: 孙志坚     E-mail: andreaskai@hotmail.com;sun_zju@126.com
作者简介: 黄凯(1995—),男,硕士生,从事换热器磨损与优化的研究. orcid.org/0000-0002-7080-0826. E-mail: andreaskai@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄凯
孙志坚
钱文瑛
杨继虎
俞自涛
胡亚才

引用本文:

黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.

Kai HUANG,Zhi-jian SUN,Wen-ying QIAN,Ji-hu YANG,Zi-tao YU,Ya-cai HU. Dimensionless material cost model of media gas-gas heat exchangers. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1362-1368.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.07.015        http://www.zjujournals.com/eng/CN/Y2020/V54/I7/1362

图 1  MGGH工作原理图
图 2  最优无量纲成本F求解过程
参数 设计值
烟气冷却器入口烟气体积流量/(m3·h?1) 1 874 000
烟气冷却器入口烟气温度/℃ 158
烟气冷却器出口烟气温度/℃ 95
烟气冷却器个数 2
烟气再热器入口烟气体积流量/(m3·h?1) 1600 000
烟气再热器入口烟气温度/℃ 30
烟气再热器出口烟气温度/℃ 80
烟气再热器个数 1
热段入口中间媒介温度/℃ 70
热段出口中间媒介温度/℃ 100
双H型鳍片管直径/mm 38
壁厚/mm 5
表 1  某电厂MGGH的主要设计技术参数
换热管材料 价格/(万元·t?1 使用寿命/a (W·A)heater
Corten-A 0.52 2.5 0.2080
ND 0.65 4 0.1625
316L 3 10 0.3000
表 2  烟气再热器换热管使用寿命与年成本
换热管材料 使用寿命/a (W·A)cooler
Corten-A 6.36 0.08176
ND 7.07 0.09194
316L 7.06 0.42490
表 3  烟气冷却器换热管理论使用最小寿命和年成本
图 3  给定工况下的无量纲成本关系图
图 4  不同比性能价格下的MGGH无量纲参数关系图
1 刘文 330 WM机组MGGH系统改造分析与研究[J]. 锅炉制造, 2016, (4): 37- 39
LIU Wen Analysis and research on the MGGH system of 330 MW unit[J]. Boiler Manufacturing, 2016, (4): 37- 39
2 王中伟, 李超, 于丽新 350 MW燃煤机组加装MGGH系统设计方案的制定[J]. 环境保护与循环经济, 2014, 34 (2): 42- 47
WANG Zhong-wei, LI Chao, YU Li-xin MGGH installation programmes in the 350 MW coal-fired units[J]. Environmental Protection and Circular Economy, 2014, 34 (2): 42- 47
doi: 10.3969/j.issn.1674-1021.2014.02.015
3 韩联进, 巫江虹, 薛志强 电动客车热泵空调系统仿真与改进[J]. 浙江大学学报: 工学版, 2018, 52 (4): 641- 648
HAN Lian-jin, WU Jiang-hong, XUE Zhi-qiang Simulation and improvement of heat pump air conditioning system for electric bus[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 641- 648
4 徐坚, 俞亚南 动态负荷下地源热泵系统的优化设计[J]. 浙江大学学报: 工学版, 2010, 44 (6): 1197- 1200
XU Jian, YU Ya-nan Optimizing design of ground source heat pump systems under dynamic load[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (6): 1197- 1200
5 王立新, 黄凯, 孙志坚 板式换热器热工选型优化算法探讨[J]. 能源工程, 2019, (2): 79- 82
WANG Li-xin, HUANG Kai, SUN Zhi-jian Discussion on optimization algorithm for sizing calculation of plate heat exchanger[J]. Energy Engineering, 2019, (2): 79- 82
6 ARANI A A A, MORADI R Shell and tube heat exchanger optimization using new baffle and tube configuration[J]. Applied Thermal Engineering, 2019, 157: 113736
doi: 10.1016/j.applthermaleng.2019.113736
7 阳君, 刘俊, 刘小华, 等 列管式烟气–烟气换热器烟道系统优化设计[J]. 中国电机工程学报, 2019, 39 (8): 2384- 2393
YANG Jun, XIE Jun, LIU Xiao-hua, et al Optimization design of tubular gas gas heater[J]. Proceedings of the CSEE, 2019, 39 (8): 2384- 2393
8 SUN F T, CHEN X, FU L, et al Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger[J]. Energy, 2018, 164 (DEC 1): 308- 417
9 王星, 危尚好, 秦登平, 等 炼钢合金最小成本控制系统的开发及冶金自动应用[J]. 冶金自动化, 2019, 43 (1): 47
WANG Xing, WEI Shang-hao, QIN Deng-ping, at al Development and application of alloy minimum cost control system for steelmaking[J]. Metallurgical Industry Automation, 2019, 43 (1): 47
10 张乾坤, 周琴, 李健 管壳式换热器传热温差的优化及影响分析[J]. 山东化工, 2018, 47 (18): 103- 104
ZHANG Qian-kun, ZHOU Qin, LI Jian Optimization of heat transfer temperature difference and influence analysis on the shell-and-tube heat exchanger[J]. Shandong Chemical Industry, 2018, 47 (18): 103- 104
doi: 10.3969/j.issn.1008-021X.2018.18.046
11 CAPUTO A C, PELAGAGGE P M, SALINI P Manufacturing cost model for heat exchangers optimization[J]. Applied Thermal Engineering, 2015, 94: 513- 533
12 刘鹏, 邬志敏, 王芳, 等 基于换热成本比的R410A风冷式冷凝器优化[J]. 上海理工大学学报, 2007, (4): 358- 362
LIU Peng, WU Zhi-min, WANG Fang, et al Performance optimization for R410A air cooling condenser based on heat capacity price ratio[J]. Journal of University of Shanghai for Science and Technology, 2007, (4): 358- 362
doi: 10.3969/j.issn.1007-6735.2007.04.013
13 陈文理 MGGH技术在1000 MW机组中应用的技术、经济性分析[J]. 电力建设, 2014, 35 (5): 103- 107
CHEN Wen-li Technical and economic analysis of MGGH technology application in 1000 MW unit[J]. Electric Power Construction, 2014, 35 (5): 103- 107
doi: 10.3969/j.issn.1000-7229.2014.05.018
14 RAHIMI B, CHUA H T. Low grade heat driven multi-effect distillation and desalination [M]. [S. l.]: Elsevier, 2017.
15 HASLEGO C, POLLEY G Compact heat exchangers - Part 1: designing plate-and-frame heat exchangers[J]. Chemical Engineering Progress, 2003, 99 (1): 32- 37
16 杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2006: 466-508.
17 林宗虎, 徐通模. 实用锅炉手册[M]. 北京: 化学工业出版社, 2009: 429-529.
18 同济大学数学系. 高等数学: 上册[M]. 上海: 同济大学出版社, 2014.
19 赵钦新, 张知翔, 杜文智, 等 模拟气氛下硫酸露点的腐蚀试验研究[J]. 动力工程学报, 2012, 32 (5): 420- 424
ZHAO Qin-xin, ZHANG Zhi-xiang, DU Wen-zhi, et al Experimental study on sulfuric acid dew point corrosion in simulated atmospheric conditions[J]. Journal of Chinese Society of Power Engineering, 2012, 32 (5): 420- 424
doi: 10.3969/j.issn.1674-7607.2012.05.015
20 何雅玲, 汤松臻, 王飞龙, 等 中低温烟气换热器气侧积灰、磨损及腐蚀的研究[J]. 科学通报, 2016, 61 (17): 1858- 1876
HE Ya-ling, TANG Song-zhen, WANG Fei-long, et al Gas-side fouling, erosion and corrosion of heat exchanger formiddle and low temperature flue gas waste heat recovery[J]. Science Bulletin, 2016, 61 (17): 1858- 1876
21 王维, 陆倩 锅炉尾部不同材料的低温耐蚀受热面比较[J]. 中国特种设备安全, 2016, 32 (12): 55- 58
WANG Wei, LU Qian Comparison of low-temperature heating surfaces with different corrosion-resistant material at the tail of boiler[J]. China Special Equipment Safety, 2016, 32 (12): 55- 58
doi: 10.3969/j.issn.1673-257X.2016.12.013
22 OKA Y I, OKAMURA K, YOSHIDA T Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation[J]. Wear, 2005, 259: 95- 101
doi: 10.1016/j.wear.2005.01.039
[1] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[2] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.
[3] 张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.
[4] 张鹏,刘晓健,张树有,裘乐淼,伊国栋. 稀疏混合不确定变量优化方法及应用[J]. 浙江大学学报(工学版), 2019, 53(3): 435-443.
[5] 刘国梁, 李新, 伍梁, 李振宇, 陈国柱. 宽范围输入输出电压LCC谐振变换器的分析设计[J]. 浙江大学学报(工学版), 2018, 52(9): 1762-1770.
[6] 宋伟, 姜红建, 王滔, 高振飞, 杜镇韬, 朱世强. 爬壁机器人磁吸附组件优化设计与试验研究[J]. 浙江大学学报(工学版), 2018, 52(10): 1837-1844.
[7] 唐伟佳, 江道灼, 尹瑞, 梁一桥, 王玉芬. 模块化隔离型直流变换器的同轴变压器设计[J]. 浙江大学学报(工学版), 2017, 51(8): 1646-1652.
[8] 张玄武, 郑耀, 杨波威, 张继发. 基于级联前向网络的翼型优化设计[J]. 浙江大学学报(工学版), 2017, 51(7): 1405-1411.
[9] 蒋卓华, 蒋焕煜, 童俊华. 穴盘苗自动移栽机末端执行器的优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1119-1125.
[10] 刘长铖, 李文辉, 张文平, 夏文, 张子鉴, 周耀锋. 大型船用柴油机余热利用系统性能研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2259-2264.
[11] 田燕萍,金肖玲,王永. 强化现象启发的随机振动能量收集器优化设计[J]. 浙江大学学报(工学版), 2016, 50(5): 934-940.
[12] 赵琼,童水光,钟崴,葛俊旭. 基于GA-FEA的门座起重机变幅机构优化设计[J]. 浙江大学学报(工学版), 2015, 49(5): 880-886.
[13] 胡友瑞,刘彦,汪洋,刘建忠,周俊虎,胡巍,李洪伟. 高湿氢氧喷注器数值分析与正交设计[J]. 浙江大学学报(工学版), 2015, 49(12): 2403-2409.
[14] 陈进,庆飞,庞晓平. 基于组合挖掘的反铲液压挖掘机工作装置优化设计[J]. 浙江大学学报(工学版), 2014, 48(9): 1654-1660.
[15] 王异凡, 张 曙,陈国柱. MCR型动态无功补偿装置优化设计[J]. 浙江大学学报(工学版), 2014, 48(9): 1676-1681.