Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (4): 638-644    DOI: 10.3785/j.issn.1008-973X.2019.04.004
机械与能源工程     
基于响应面的柔轮应力和刚度分析
张雷1(),张立华3,王家序1,2,李俊阳1,*(),肖科1
1. 重庆大学 机械传动国家重点实验室,重庆 400044
2. 四川大学 空天科学与工程学院,四川 成都 610065
3. 中航工业长空精密机械制造公司,陕西 汉中 723000
Analysis of stress and stiffness of flexspline based on response surface method
Lei ZHANG1(),Li-hua ZHANG3,Jia-xu WANG1,2,Jun-yang LI1,*(),Ke XIAO1
1. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
2. School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
3. AVIC Aerospace Precision Machinery Manufacturing Company, Hanzhong 723000, China
 全文: PDF(1043 KB)   HTML
摘要:

针对柔轮的小体积、高刚度、高寿命的设计要求,在理论上建立弹性齿圈受力模型,探究设计时结构间的尺寸搭配与补偿方法. 基于响应面法和中心复合设计(CCD)采样方法,在ANSYS Workbench中进行参数化建模和有限元分析,得出应力和刚度对结构参数的响应曲面(线),分析各结构参数对应力和刚度的影响规律. 分析结果表明,在柔轮的小体积设计中,可以减小径向变形量以抵消半径减小时增加的应力,减小壁厚以抵消筒长减小时内壁产生的应力. 柔轮的小体积设计会使承载能力减弱,加剧齿圈后端的应力集中和疲劳破坏. 应在保证啮合状态和承载能力的情况下,增大厚径比,减小径向变形量,以减轻齿圈后端的应力集中现象. 通过响应面法得出关于柔轮应力和刚度的回归曲线,可以用于设计时获取最优值.

关键词: 响应面法柔轮结构参数应力刚度优化设计    
Abstract:

The mechanical model of flexspline gear ring was theoretically established aiming at the design demand of flexspline such as small size, high stiffness and long life. The matching and compensating method of dimension was explored in the design. Then the finite element analysis was conducted in ANSYS Workbench by using response surface method and central composite design (CCD) method, and the response surface of stress and stiffness was analyzed. The influence law of each structural parameter on stress and stiffness were obtained. The analysis results show that radial deformation can be reduced to counteract the increased stress when radius decreases, and thickness can be reduced to counteract the generated stress when length decreases in the design of small volume. The small volume design of the flexspline will weaken the bearing capacity and aggravate the phenomenon of stress concentration and fatigue damage at the ring gear. It is necessary to increase the ratio of thickness to diameter or reduce the radial deformation to reduce the phenomenon of stress concentration at the end of the ring gear under the condition of ensuring the meshing state and the bearing capacity. The regression curves of stress and stiffness were obtained, which can be used to obtain optimal value.

Key words: response surface method    structural parameter of flexspline    stress    stiffness    optimize design
收稿日期: 2018-03-18 出版日期: 2019-03-28
CLC:  TH 132  
通讯作者: 李俊阳     E-mail: 1106871508@qq.com;lijunyang1982@sina.com
作者简介: 张雷(1994—),男,硕士生,从事谐波减速器设计研究. orcid.org/0000-0002-6935-0063. E-mail: 1106871508@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张雷
张立华
王家序
李俊阳
肖科

引用本文:

张雷,张立华,王家序,李俊阳,肖科. 基于响应面的柔轮应力和刚度分析[J]. 浙江大学学报(工学版), 2019, 53(4): 638-644.

Lei ZHANG,Li-hua ZHANG,Jia-xu WANG,Jun-yang LI,Ke XIAO. Analysis of stress and stiffness of flexspline based on response surface method. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 638-644.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.04.004        http://www.zjujournals.com/eng/CN/Y2019/V53/I4/638

图 1  柔轮结构简图
图 2  柔轮弹性齿圈微元段受力模型
图 3  柔轮及装配模型
图 4  柔轮带齿模型及齿圈模型应力对比
图 5  应力响应局部灵敏度
序号 r/mm w0/mm p1/MPa p2/MPa k/(105N·m·rad?1)
1 25 0.414 649 599 1.4
2 25 0.352 556 522 1.4
3 25 0.476 744 677 1.5
4 15 0.414 1 121 1 321 0.5
5 35 0.414 471 385 2.8
6 15 0.352 990 1 162 0.48
7 15 0.476 1 258 1 486 0.52
8 35 0.352 400 331 2.7
9 35 0.476 540 439 2.8
表 1  r-w0设计点参数及运算结果
图 6  应力、刚度随半径的变化曲线
图 7  应力、刚度随径向变形量的变化曲线
序号 i j p1/MPa p2/MPa k/(105N·m·rad?1)
1 0.45 0.011 5 534 474 2.3
2 0.30 0.011 5 493 402 2.5
3 0.60 0.011 5 520 497 1.9
4 0.45 0.008 513 528 1.6
5 0.45 0.015 551 447 2.8
6 0.30 0.008 422 531 1.9
7 0.60 0.008 455 424 1.3
8 0.30 0.015 512 408 3.1
9 0.60 0.015 543 414 2.3
表 2  i-j设计点参数及运算结果
图 8  应力、刚度随长径比的变化曲线
图 9  应力、刚度随厚径比的变化曲线
1 王家序, 周祥祥, 李俊阳, 等 杯形柔轮谐波传动三维双圆弧齿廓设计[J]. 浙江大学学报: 工学版, 2016, 50 (4): 616- 624
WANG Jia-xu, ZHOU Xiang-xiang, LI Jun-yang, et al Three dimensional profile design of cup harmonic drive with double-circular-arc common-tangent tooth profile[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (4): 616- 624
2 王家序, 袁攀, 谭春林, 等 基于齿条近似法的谐波传动空间齿廓设计方法[J]. 吉林大学学报: 工学版, 2017, 47 (4): 1121- 1129
WANG Jia-xu, YUAN Pan, TAN Chun-lin, et al Spatial tooth profile design of harmonic drive by rack approximation method[J]. Jilin Daxue Xuebao: Engineering Science, 2017, 47 (4): 1121- 1129
3 吴伟国, 于鹏飞, 侯月阳 短筒柔轮谐波齿轮传动新设计新工艺与实验[J]. 哈尔滨工业大学学报, 2014, 46 (1): 40- 46
WU Wei-guo, YU Peng-fei, HOU Yue-yang New design, new process of harmonic drive with short flexspline and its experiment[J]. Journal of Harbin Institute of Technology, 2014, 46 (1): 40- 46
4 柴文杰. 谐波齿轮传动柔轮变形特性研究[D]. 北京: 中国地质大学(北京), 2017.
CHAI Wen-jie. Studies on deformation characteristics of flexible wheel in harmonic gear drive [D]. Beijing: China University of Geosciences (Beijing), 2017.
5 MA Dong-hui, WU Jia-ning, LIU Tao, et al Deformation analysis of the flexspline of harmonic drive gears considering the driving speed effect using laser sensors[J]. Science China (Technological Sciences), 2017, 60 (08): 1175- 1187
doi: 10.1007/s11431-016-9060-y
6 邹创, 陶涛, 梅雪松, 等 机器人关节短筒谐波减速器接触计算与分析[J]. 西安交通大学学报, 2013, 47 (5): 82- 87
ZOU Chuang, TAO Tao, MEI Xue-song, et al Contact analysis for short harmonic reducer in robotic joints[J]. Journal of Xi’an Jiaotong University, 2013, 47 (5): 82- 87
7 ZOU Chuang, TAO Tao, JIANG Ge-dong, et al A harmonic drive model considering geometry and internal interaction[J]. Journal of Mechanical Engineering Science, 2015, 231 (4): 1- 15
8 李奇. 不同参数对谐波减速器柔轮动态特性的影响[D]. 重庆: 重庆大学, 2016.
LI Qi. Effect of different parameters on the dynamic characteristics of the flexspline of a harmonic reducer [D]. Chongqing: Chongqing University, 2016.
9 PACANA J, WITKOWSKI W, MUCHA J FEM analysis of stress distribution in the hermetic harmonic drive flexspline[J]. Strength of Materials, 2017, (1): 1- 11
10 LEóN D, ARZOLA N, TOVAR A Statistical analysis of the influence of tooth geometry in the performance of a harmonic drive[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2015, 37 (2): 723- 735
11 KAYABASI O, ERZINCANLI F Shape optimization of tooth profile of a flexspline for a harmonic drive by finite element modeling[J]. Materials and Design, 2007, 28 (2): 441- 447
doi: 10.1016/j.matdes.2005.09.009
12 TJAHJOWIDODO T, AL-BENDER F, BRUSSEL H V Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives[J]. Mechatronics, 2013, 23 (5): 497- 504
doi: 10.1016/j.mechatronics.2013.04.002
13 TIMOFEEV G A, KOSTIKOV Y V Torsional rigidity of harmonic gear drives[J]. Russian Engineering Research, 2016, 36 (12): 995- 998
doi: 10.3103/S1068798X16120169
14 赵建虎. 谐波传动机构柔轮的应力分布及寿命特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.
ZHAO Jian-hu. Stress distribution and life characteristics analysis of flexspline in harmonic drive [D]. Harbin: Harbin Institute of Technology, 2013.
15 张俊, 刘先增, 焦阳, 等 基于刚柔耦合模型的行星传动固有特性分析[J]. 机械工程学报, 2014, 50 (15): 104- 112
ZHANG Jun, LIU Xian-zeng, JIAO Yang, et al Vibration analysis of planetary gear trains based on a discrete- continuum dynamic model[J]. Journal of Mechanical Engineering, 2014, 50 (15): 104- 112
16 叶南海, 邓鑫, 何韵, 等 谐波柔轮力学分析与疲劳寿命研究[J]. 湖南大学学报: 自然科学版, 2018, (2): 18- 25
YE Nan-hai, DENG Xin, HE Yun, et al Study on mechanical analysis and fatigue life of harmonic flexspline[J]. Journal of Hunan University: Natural Science, 2018, (2): 18- 25
17 KITTUR J K, CHOUDHARI M N, PARAPPAGOUDAR M B Modeling and multi-response optimization of pressure die casting process using response surface methodology[J]. International Journal of Advanced Manufacturing Technology, 2015, 77 (1-4): 211- 224
doi: 10.1007/s00170-014-6451-x
18 秦训鹏, 冯佳伟, 王永亮, 等 基于响应面方法的微型车车门模态分析与优化[J]. 中国机械工程, 2017, 28 (14): 1690- 1695
QIN Xun-peng, FENG Jia-wei, WANG Yong-liang, et al Structural modal analysis and optimization of mini-car doors based on response surface method[J]. China Mechanical Engineering, 2017, 28 (14): 1690- 1695
[1] 陈原,郭登辉,田丽霞. 绳牵引刚柔式波浪补偿并联机构的设计与建模[J]. 浙江大学学报(工学版), 2021, 55(5): 810-822.
[2] 朱斌,蒋楠,周传波,贾永胜,罗学东,吴廷尧. 粉质黏土层直埋铸铁管道爆破地震效应[J]. 浙江大学学报(工学版), 2021, 55(3): 500-510.
[3] 孙海超,王文军,凌道盛. 低掺量水泥固化土的力学特性及微观结构[J]. 浙江大学学报(工学版), 2021, 55(3): 530-538.
[4] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[5] 李中南,朱海波,赵阳,罗雪,徐荣桥. 装配式桥墩温度应力分析与裂纹控制[J]. 浙江大学学报(工学版), 2021, 55(1): 46-54.
[6] 张勤玲,黄志义. 高温高湿盐环境下SBS改性沥青胶浆的高温性能[J]. 浙江大学学报(工学版), 2021, 55(1): 38-45.
[7] 郭英杰,顾钒,董辉跃,汪海晋. 压脚压紧力作用下的机器人变形预测和补偿[J]. 浙江大学学报(工学版), 2020, 54(8): 1457-1465.
[8] 张征,张豪,柴灏,吴化平,姜少飞. 变刚度多稳态复合材料结构设计与性能分析[J]. 浙江大学学报(工学版), 2020, 54(7): 1341-1346.
[9] 黄凯,孙志坚,钱文瑛,杨继虎,俞自涛,胡亚才. 中间介质型烟气换热器无量纲材料成本模型[J]. 浙江大学学报(工学版), 2020, 54(7): 1362-1368.
[10] 曲扬,罗永峰,朱钊辰,黄青隆. 网壳结构地震反应分析的振型刚度法[J]. 浙江大学学报(工学版), 2020, 54(6): 1068-1077.
[11] 罗军,邵旭东,曹君辉,樊伟,裴必达. 钢-超高性能混凝土组合板开裂荷载正交试验及计算方法[J]. 浙江大学学报(工学版), 2020, 54(5): 909-920.
[12] 李庆华,舒程岚青. 超高韧性水泥基复合材料的波传播试验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 851-857.
[13] 冷伍明,张期树,徐方,冷慧康,聂如松,杨秀航. 预应力路堤附加围压场与围压增强效应[J]. 浙江大学学报(工学版), 2020, 54(5): 858-869.
[14] 庄心善,赵汉文,王俊翔,黄勇杰. 合肥膨胀土动弹性模量与阻尼比试验研究[J]. 浙江大学学报(工学版), 2020, 54(4): 759-766.
[15] 喻伯平,李高华,谢亮,王福新. 基于代理模型的旋翼翼型动态失速优化设计[J]. 浙江大学学报(工学版), 2020, 54(4): 833-842.