Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (8): 1553-1559    DOI: 10.3785/j.issn.1008-973X.2022.08.009
土木与交通工程     
基于分位数回归的随机优化速度跟驰模型
潘义勇(),管星宇
南京林业大学 汽车与交通工程学院,江苏 南京 210037
Stochastic optimal velocity car-following model based on quantile regression
Yi-yong PAN(),Xing-yu GUAN
College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China
 全文: PDF(1652 KB)   HTML
摘要:

为了研究交通流异质性对车辆跟驰行为的影响,基于分位数回归方法改进优化速度函数. 根据实际交通流数据对改进的优化速度函数进行参数标定,并对参数结果进行假设检验,结合改进的优化速度函数和全速度差跟驰模型建立随机优化速度跟驰模型,利用傅里叶变换理论推导跟驰模型的稳定性条件,并搭建环形车道仿真平台对跟驰模型进行数值实验. 结果表明:改进的优化速度函数能更好地反映交通流异质性对交通流的影响;单一分位点车队达到稳定状态的时间与分位点呈正相关;多分位点组合车队随着0.5分位点车辆数的增加,达到稳定状态的时间减少. 提出的多分位点车队相比于单一分位点车队可以更真实地反映交通流复杂的运行状况.

关键词: 交通工程跟驰模型非线性分位数回归优化速度函数交通流理论    
Abstract:

The optimized velocity function was improved based on quantile-regression method, in order to study the influence of traffic flow heterogeneity on car-following behavior. The parameters of the improved optimized velocity function were calibrated according to the actual traffic flow data, and the hypothesis test of the parameter results was carried out. Combined with the improved optimized velocity function and the full speed difference car-following model, a stochastic optimized velocity car-following model was established, and the stability conditions of the car-following model were deduced by using Fourier transform theory. A loop lane simulation platform was built to carry out numerical experiments on the car-following model. Results show that the improved optimized velocity function can better reflect the impact of traffic flow heterogeneity on traffic flow. There was a positive correlation between the time when the single quantile team reached the stable state and the quantile. The time to reach steady state was decreased with the increase of the number of vehicles at 0.5 quantile in the multi quantile fleet. Compared with the single quantile fleet, the proposed multi quantile fleet can truly reflect the complex operation of traffic flow.

Key words: traffic engineering    car-following model    nonlinear quantile-regression calibration    optimal velocity model    traffic flow theory
收稿日期: 2021-08-17 出版日期: 2022-08-30
CLC:  U 491  
基金资助: 国家自然科学基金资助项目(51508280);南京林业大学高学历人才基金资助项目(GXL2014031)
作者简介: 潘义勇(1980—),男,副教授,从事交通管理与控制研究. orcid.org/0000-0002-2435-970X. E-mail: uoupanyg@njfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
潘义勇
管星宇

引用本文:

潘义勇,管星宇. 基于分位数回归的随机优化速度跟驰模型[J]. 浙江大学学报(工学版), 2022, 56(8): 1553-1559.

Yi-yong PAN,Xing-yu GUAN. Stochastic optimal velocity car-following model based on quantile regression. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1553-1559.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.009        https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1553

图 1  不同交通流密度下的速度概率分布
$\tau $ $V_1^\tau $ $V_2^\tau $ $C_1^\tau $ $C_2^\tau $ $\tau $ $V_1^\tau $ $V_2^\tau $ $C_1^\tau $ $C_2^\tau $
0.1 10.028 6.396 0.081 2.071 0.6 11.040 6.737 0.121 2.304
0.2 10.423 6.476 0.095 2.226 0.7 10.990 7.051 0.115 2.059
0.3 10.608 6.615 0.101 2.230 0.8 11.195 7.139 0.120 2.085
0.4 10.840 6.408 0.125 2.619 0.9 11.512 7.327 0.129 2.071
0.5 10.908 6.608 0.119 2.358 ? ? ? ? ?
表 1  分位数回归模型拟合结果
图 2  速度-密度关系拟合曲线
图 3  基于分位数回归在不同密度下的速度概率分布
k
(辆/km)
原始数据速度分布 分位数回归速度拟合值分布
SK N/
(km·h?1
M/
(km·h?1
SK N/
(km·h?1
M/
(km·h?1
5.03 0.003 17.780 17.963(0.352) ?0.086 17.230 17.564(0.447)
35.20 ?1.098 12.500 16.381(0.224) ?0.480 12.694 15.068(0.140)
47.77 1.049 11.250 7.510(0.191) 1.435 11.775 7.581(0.164)
表 2  原始数据-分位数回归拟合值的速度分布
图 4  FVD模型稳定临界曲线( $\lambda $=0.4)
图 5  环形车道跟驰仿真场景
图 6  不同分位点车速分布
图 7  多分位点混合行驶车速分布
图 8  不同分位点位移极差
图 9  不同分位点速度变化
1 NEWLL G F Nonlinear effects in the dynamics of car following[J]. Operations Research, 1961, 9 (2): 209- 229
doi: 10.1287/opre.9.2.209
2 BANDO M, HASEBE K, NAKAYAMA A, et al Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E, 1995, 51 (2): 1035- 1042
doi: 10.1103/PhysRevE.51.1035
3 HELBING D, TILCH B Generalized force model of traffic dynamics[J]. Physical Review E, 1998, 58 (1): 133- 138
doi: 10.1103/PhysRevE.58.133
4 姜锐, 吴清松 交通流复杂动态特性的微观和宏观模式研究[J]. 中国科学院研究生院学报, 2006, 23 (6): 848- 854
JIANG Rui, WU Qing-song Study on the complex dynamic properties of traffic flow from the micro and macro modelling[J]. Journal of Graduate School of the Chinese Academy of Sciences, 2006, 23 (6): 848- 854
5 王涛, 高自有, 赵小梅 多速度差模型及稳定性分析[J]. 物理学报, 2006, 55 (2): 634- 640
WANG Tao, GAO Zi-you, ZHAO Xiao-mei Multiple velocity difference model and its stability analysis[J]. Acta Physia Sinica, 2006, 55 (2): 634- 640
doi: 10.3321/j.issn:1000-3290.2006.02.028
6 葛红霞, 崔煜, 程荣军 考虑前后车效应的反馈控制跟驰模型[J]. 物理学报, 2014, 63 (11): 103- 109
GE Hong-xia, CUI Yu, CHENG Rong-jun A car-following model with considering control signals from front and rear[J]. Acta Physia Sinica, 2014, 63 (11): 103- 109
doi: 10.7498/aps.63.110504
7 杨龙海, 赵顺, 徐洪 基于改进优化速度函数的跟驰模型研究[J]. 交通运输系统工程与信息, 2017, 17 (2): 41- 46+47
YANG Long-hai, ZHAO Shun, XU Hong Car-following model based on the modified optimal velocity function[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17 (2): 41- 46+47
doi: 10.16097/j.cnki.1009-6744.2017.02.007
8 ZHANG L, ZHANG S R, ZHOU B, et al An improved car-following model considering desired safety distance and heterogeneity of driver’s sensitivity[J]. Journal of Advanced Transportation, 2021, (1): 1- 12
9 JIN S, WANG D H, TAO P F, et al Non-lane-based full velocity difference car following model[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389 (21): 4654- 4662
doi: 10.1016/j.physa.2010.06.014
10 WANG H, LI Y, WANG W, et al Optimal velocity model with dual boundary optimal velocity function[J]. Transportmetrica B: Transport Dynamics, 2016, 5 (2): 211- 227
11 WENG J X, GAN X F, DU G Random coefficient models for work zone headway distribution[J]. Journal of Transportation Engineering, Part A. Systems, 2019, 145 (10): 1- 7
12 CHENG J Y, HUANG S C, TZENG S J Quantile regression methods for left-truncated and right-censored data[J]. Journal of Statistical Computation and Simulation, 2016, 86 (3): 443- 459
doi: 10.1080/00949655.2015.1016433
13 TRANSGUIDE. Texas Department of Transportation [EB/OL]. [2021-08-01]. http://www.transguide.dot.state.tx.us/.
14 王殿海. 交通流理论[M]. 北京: 人民交通出版社, 2002: 11-12.
15 管星宇, 潘义勇 基于随机参数线性回归的交通流速度-密度关系模型研究[J]. 森林工程, 2021, 37 (5): 90- 95
GUAN Xing-yu, PAN Yi-yong Research on traffic flow speed-density model based on random-parameter linear regression[J]. Forest Engineering, 2021, 37 (5): 90- 95
doi: 10.3969/j.issn.1006-8023.2021.05.012
[1] 侯越,韩成艳,郑鑫,邓志远. 基于时空融合图卷积的交通流数据修复方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1394-1403.
[2] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[3] 曹宁博,赵利英. 路段环境自动驾驶汽车通行权决策方法[J]. 浙江大学学报(工学版), 2022, 56(1): 118-127.
[4] 王忠宇,王玲,王艳丽,吴兵. 基于网络变结构优化的大型活动交通拥堵预防方法[J]. 浙江大学学报(工学版), 2021, 55(2): 358-366.
[5] 卢凯,田鑫,林观荣,邓兴栋. 交叉口信号相位设置与配时同步优化模型[J]. 浙江大学学报(工学版), 2020, 54(5): 921-930.
[6] 曾佳棋,王殿海. 双向干线协调控制的改进数解算法[J]. 浙江大学学报(工学版), 2020, 54(12): 2386-2394.
[7] 张思佳,贾顺平,毛保华,麻存瑞,张桐. 乘客出行距离分布对轨道线网内公交竞争力的影响[J]. 浙江大学学报(工学版), 2019, 53(2): 292-298.
[8] 龚越, 罗小芹, 王殿海, 杨少辉. 基于梯度提升回归树的城市道路行程时间预测[J]. 浙江大学学报(工学版), 2018, 52(3): 453-460.
[9] 商强, 林赐云, 杨兆升, 邴其春, 邢茹茹. 基于变量选择和核极限学习机的交通事件检测[J]. 浙江大学学报(工学版), 2017, 51(7): 1339-1346.
[10] 刘美岐, 沈莉潇, 金盛. 考虑右转信号控制的共用车道通行能力模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1347-1354.
[11] 徐程, 曲昭伟, 王殿海, 金盛. 混合自行车交通流速度分布模型[J]. 浙江大学学报(工学版), 2017, 51(7): 1331-1338.
[12] 王韩麒, 陈红, 冯微, 刘玮蔚. 基于CPT的异质通勤者多维出行决策模型[J]. 浙江大学学报(工学版), 2017, 51(2): 297-303.
[13] 于德新, 田秀娟, 杨兆升, 周熙阳, 程泽阳. 改进的干线协调信号控制优化模型[J]. 浙江大学学报(工学版), 2017, 51(10): 2019-2029.
[14] 周旦, 马晓龙, 金盛, 王殿海. 混合非机动车交通流超车次率影响因素模型[J]. 浙江大学学报(工学版), 2015, 49(9): 1672-1678.
[15] 孙文财, 杨志发, 李世武, 徐艺, 郭梦竹, 魏学新. 面向驾驶员注视区域划分的DBSCAN-MMC方法[J]. 浙江大学学报(工学版), 2015, 49(8): 1455-1461.