计算机与控制工程 |
|
|
|
|
基于改进γ-CLAHE算法的水下机器人图像识别 |
成宏达1( ),骆海明1,夏庆超1,2,*( ),杨灿军1,2 |
1. 浙江大学宁波研究院,浙江 宁波 315100 2. 浙江大学 机械工程学院,浙江 杭州 310027 |
|
Recognition of images for underwater vehicle based on improved γ-CLAHE algorithm |
Hong-da CHENG1( ),Hai-ming LUO1,Qing-chao XIA1,2,*( ),Can-jun YANG1,2 |
1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China 2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China |
引用本文:
成宏达,骆海明,夏庆超,杨灿军. 基于改进γ-CLAHE算法的水下机器人图像识别[J]. 浙江大学学报(工学版), 2022, 56(8): 1648-1655.
Hong-da CHENG,Hai-ming LUO,Qing-chao XIA,Can-jun YANG. Recognition of images for underwater vehicle based on improved γ-CLAHE algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1648-1655.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.08.019
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I8/1648
|
1 |
KANG W, XIWU G Design of optimal scheme for industrial network monitoring of ocean energy power generation system[J]. IOP Conference Series: Earth and Environmental Science, 2021, 647 (1): 012120
doi: 10.1088/1755-1315/647/1/012120
|
2 |
彭飞, 富宁宁, 胡伟, 等 国内外海洋资源研究知识图谱解析及启示[J]. 资源科学, 2020, 42 (11): 2047- 2061 PENG Fei, Fu Ning-ning, HU Wei, et al Analysis and enlightenment of knowledge map of marine resources research at home and abroad[J]. Resources Science, 2020, 42 (11): 2047- 2061
doi: 10.18402/resci.2020.11.01
|
3 |
陈永华, 于非, 张林林, 等 深海综合观测浮标研制及其在热带西太平洋的应用[J]. 海洋科学, 2020, 44 (8): 215- 222 CHEN Yong-hua, YU Fei, ZHANG Lin-lin, et al Design and development of deep-sea buoys and their applications in the tropical western Pacific[J]. Marine Sciences, 2020, 44 (8): 215- 222
|
4 |
王庆琳, 陈水浩, 陈冬妮, 等 中国南海海洋真菌资源及其活性次级代谢产物研究评述[J]. 生物资源, 2020, 42 (5): 505- 514 WANG Qing-lin, CHEN Shui-hao, CHEN Dong-ni, et al Review on the research of marine fungus resources and their bioactive secondary metabolites from the South China Sea[J]. Biotic Resources, 2020, 42 (5): 505- 514
|
5 |
宋泽明, 宁凌 基于 DPSIR-TOPSIS 模型的我国沿海省份海洋资源环境承载力评价及障碍因素研究[J]. 生态经济, 2020, 36 (8): 154- 160 SONG Ze-ming, NING Ling Evaluation and obstacle factors of marine resources and environment carrying capacity of coastal provinces and cities in China based on DPSIR-TOPSIS model[J]. Ecological Economy, 2020, 36 (8): 154- 160
|
6 |
朱光文 我国海洋探测技术五十年发展的回顾与展望(三)[J]. 海洋技术, 2000, (1): 23- 31 ZHU Guang-wen Review and prospect for the marine survey technology development in the past 50 years of china[J]. Journal of Ocean Technology, 2000, (1): 23- 31
doi: 10.3969/j.issn.1003-2029.2000.01.003
|
7 |
BOUDHANE M, NSIRI B Underwater image processing method for fish localization and detection in submarine environment[J]. Journal of Visual Communication and Image Representation, 2016, 39: 226- 238
doi: 10.1016/j.jvcir.2016.05.017
|
8 |
董鹏, 周烽, 赵悰悰, 等 基于双目视觉的水下海参尺寸自动测量方法[J]. 计算机工程与应用, 2021, 57: 271- 278 DONG Peng, ZHOU Feng, ZHAO Cong-cong, et al Automatic measurement of underwater sea cucumber size based on binocular vision[J]. Computer Engineering and Applications, 2021, 57: 271- 278
doi: 10.3778/j.issn.1002-8331.2005-0096
|
9 |
CHEN H, CHUANG W, WANG C Vision-based line detection for underwater inspection of breakwater construction using an ROV[J]. Ocean Engineering, 2015, 109: 20- 33
doi: 10.1016/j.oceaneng.2015.09.007
|
10 |
郭银景, 吴琪, 苑娇娇, 等 水下光学图像处理研究进展[J]. 电子与信息学报, 2021, 43 (2): 1- 10 GUO Yin-jing, WU Qi, YUAN Jiao-jiao, et al Research progress on underwater optical image processing[J]. Journal of Electronics and Information Technology, 2021, 43 (2): 1- 10
doi: 10.11999/JEIT190803
|
11 |
方明, 刘小晗, 付飞蚺 基于注意力的多尺度水下图像增强网络[J]. 电子与信息学报, 2021, 43 (12): 1- 9 FANG Ming, LIU Xiao-han, FU Fei-ran Multi-scale underwater image enhancement network based on attention mechanism[J]. Journal of Electronics and Information Technology, 2021, 43 (12): 1- 9
doi: 10.11999/JEIT200311
|
12 |
SCHARSTEIN D, SZELISKI R A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47 (1): 7- 42
|
13 |
袁利毫, 昝英飞, 钟声华, 等 基于YOLOv3的水下小目标自主识别[J]. 海洋工程装备与技术, 2018, 5 (Suppl.1): 118- 123 YUAN Li-hao, ZAN Ying-fei, ZHONG Sheng-hua, et al Small underwater target recognition based on YOLOv3[J]. Ocean Engineering Equipment and Technology, 2018, 5 (Suppl.1): 118- 123
|
14 |
徐萌. 基于机器视觉的水下海参图像识别技术研究[D]. 济南: 山东大学, 2020: 1-10. XU Meng. Research on underwater sea cucumber image recognition technology based on machine vision [D]. Jinan: Shandong University, 2020: 1-10.
|
15 |
王若谦. 基于图像融合的水下图像增强算法研究[D]. 大连: 大连海事大学, 2016: 7−24. WANG Ruo-qian. Underwater image enhancement algorithm based on image fusion [D]. Dalian: Dalian Maritime University, 2016: 7−24.
|
16 |
HAN M, LYU Z, QIU T, et al A review on intelligence dehazing and color restoration for underwater images[J]. IEEE Transactions on Systems Man Cybernetics-Systems, 2020, 50 (5): 1820- 1832
doi: 10.1109/TSMC.2017.2788902
|
17 |
颜阳, 王颖, 丁雪妍, 等 基于图像融合的自适应水下图像增强[J]. 计算机工程与设计, 2021, 42 (1): 1- 6 YAN Yang, WANG Ying, DING Xue-yan, et al Adaptive underwater image enhancement method via image fusion[J]. Computer Engineering and Design, 2021, 42 (1): 1- 6
|
18 |
SINGH G, JAGGI N, VASAMSETTI S, et al. Underwater image/video enhancement using wavelet based color correction (WBCC) method [C]// IEEE Underwater Technology (UT). Chennai: IEEE, 2015: 1−5.
|
19 |
KASHIF I, SALAM R A, AZAM O, et al Underwater image enhancement using an integrated colour model[J]. IAENG International Journal of Computer Science, 2007, 34 (2): 239- 244
|
20 |
邹沛煜, 张卫东, 史金余, 等 基于高低频分量融合的水下图像增强算法[J]. 激光与光电子学进展, 2020, 1- 18 ZOU Pei-yu, ZHANG Wei-dong, SHI Jin-yu, et al Underwater image enhancement algorithm based on fusion of high and low frequency components[J]. Laser and Optoelectronics Progress, 2020, 1- 18
|
21 |
刘奕晖. 基于AUV的水下管道检测及位置估算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 1−10. LIU Yi-hui. Research on method of underwater pipeline detection and location estimation based on AUV [D]. Harbin: Harbin Engineering University, 2017: 1−10.
|
22 |
SHI Z, FENG Y, ZHAO M, et al Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand-dust image enhancement[J]. IET Image Processing, 2020, 14 (4): 747- 756
doi: 10.1049/iet-ipr.2019.0992
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|