[1] MOON D S, KIM S K, KIM S H. A fault detection system for wind power generator based on intelligent clustering method[J]. Journal of Institute of Control, Robotics and Systems, 2013, 19(1):27-33.
[2] FATTAHI S J, ZABIHOLLAH A, ZAREIE S. Vibration monitoring of wind turbine blade using fiber bragg grating[J]. Wind Engineering, 2010, 34(6):721-731.
[3] MAY A, MCMILLAN D, TH NS S. Economic analysis of condition monitoring systems for offshore wind turbine sub-systems[J]. IET Renewable Power Generation, 2015, 9(8):900-907.
[4] 黄玲玲,曹家麟,张开华,等.海上风电机组运行维护现状研究与展望[J].中国电机工程学报,2016,36(3):729-738. HUANG Ling-ling, CAO Jia-lin, ZHANG Kai-hua, et al. Status and prospects on operation and maintenance of offshore wind turbines[J]. Proceedings of the CSEE, 2016, 36(3):729-738.
[5] 李辉,胡姚刚,唐显虎,等.并网风电机组在线运行状态评价方法[J].中国电机工程学报,2010,30(33):103-109. LI Hui, HU Yao-gang, TANG Xian-hu, et al. Method for online operating conditions assessment for a grid-connected wind turbine generator system[J]. Proceedings of the CSEE, 2010, 30(33):103-109.
[6] 盛迎新,周继威.风电机组在线振动监测系统及现场应用[J].振动、测试与诊断,2010,30(6):703-705. SHENG Ying-xin, ZHOU Ji-wei. Online wind turbine vibration monitoring system and its application[J]. Journal of Vibration, Measurement and Diagnosis, 2010, 30(6):703-705.
[7] MADSEN H A, YE M. Low frequency noise from wind turbines mechanisms of generation and its modelling[J]. Journal of Low Frequency Noise Vibration and Active Control, 2010, 29(4):239-251.
[8] WATSON S J, XIANG B, YANG W, et al. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Transactions on Energy Conversion, 2010, 25(3):715-721.
[9] 林勇,周晓军,张文斌,等.基于形态小波理论和双谱分析的滚动轴承故障诊断[J].浙江大学学报:工学版,2010,44(3):432-439. LIN Yong, ZHOU Xiao-jun, ZHANG Wen-bin, et al. Rolling bearing fault diagnosis based on morphological wavelet theory and bi-spectrum analysis[J]. Journal of Zhejiang University:Engineering Science, 2010, 44(3):432-439.
[10] CHEN Q, YE M. Analysis of the fault diagnosis method for wind turbine generator bearing based on improved wavelet Packet-BP neural network[J]. Communications in Computer and Information Science, 2014, 463:13-20.
[11] 许同乐,郎学政,张新义,等.基于EMD相关方法的电动机信号降噪的研究[J].船舶力学,2014,18(5):599-603. XU Tong-le, LANG Xue-zheng, ZHANG Xin-yi, et al. Study on the electric motor vibration signal de-noising using EMD correlation de-noising algorithm[J]. Journal of Ship Mechanics, 2014, 18(5):599-603.
[12] 向东阳,吴正国,侯新国,等.改进的多小波变换系数相关去噪算法[J].高电压技术,2011,37(7):1728-1733. XIANG Dong-yang, WU Zheng-guo, HOU Xin-guo, et al. Improved denoising method using the correlation of multiwavelet coefficient[J]. High Voltage Engineering, 2011, 37(7):1728-1733.
[13] TANG B, LIU W, SONG T. Wind turbine fault diagnosis based on Morlet wavelet transformation and Wigner-Ville distribution[J]. Renewable Energy, 2010, 35:2862-2866.
[14] ZHENG H, LI Z, CHEN X, et al. Gear fault diagnosis based on continuous wavelet transform[J]. Mechanical systems and Signal Processing, 2002, 16(2/3):447-457.
[15] 胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130. HU Ai-jun, TANG Gui-ji, AN Lian-suo. De-noising technique for vibration signals of rotating machinery based on mathematical morphology filter[J]. Chinese Journal of Mechanical Engineering, 2006, 42(4):127-130.
[16] HUANG N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:mathematical, physical and engineering sciences. London:The Royal Society, 1998, 454(A):903-995.
[17] HUANG N E, WU Z. A review on Hilbert-huang transform:method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2):1-23.
[18] YAN R, GAO R. Hilbert-Huang Transform-Based vibration signal analysis for machine health monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(6):2320-2329.
[19] Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16):3999-4010.
[20] KARTHIK T, AMOD C U, TRAPTI J. Estimation of single-phase and three-phase power-quality indices using empirical wavelet transform[J]. IEEE Transactions on power delivery, 2015, 30(1):445-454.
[21] LI Y S, XUE B, HONG H, et al. Instantaneous pitch estimation based on empirical wavelet transform[C]//Proceedings Of The 19th International Conference On Digital Signal Processing. Hong Kong:IEEE, 2014:250-253.
[22] 李志农,朱明,褚福磊,等.基于经验小波变换的机械故障诊断方法研究[J]. 仪器仪表学报,2014,35(11):2423-2432. LI Zhi-nong, ZHU Ming, CHU Fu-lei. Mechanical fault diagnosis method based on empirical wavelet transform[J]. Chinese Journal of Scientific Instrument, 2014, 35(11):2423-2432.
[23] 陈浩,郭军海,齐巍.基于经验小波变换的目标加速度估计算法[J].北京航空航天大学学报,2015,41(1):154-159. CHEN Hao, GUO Jun-hai, QI Wei. Estimation of target's acceleration based on empirical wavelet transform[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1):154-159.
[24] OMKAR S, RAMESH K S. Onset detection in arterial blood pressure pulses using empirical wavelet transform[C]//2nd International Conference on Computing for Sustainable Global Development. New Delhi:IEEE, 2015:1612-1615.
[25] PATRICK F, GABRRIEL R, PAULO G. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2):112-114.
[26] 艾延廷,冯研研,周海仑.小波变换和EEMD-马氏距离的轴承故障诊断[J].噪声与振动控制,2015,35(1):235-239. AI Yan-ting, FENG Yan-yan, ZHOU Hai-lun. Fault diagnosis of roller bearings using wavelet transform and EEMD-Mahalanobis distance[J]. Noise and Vibration Control, 2015, 35(1):235-239. |