自动化技术、信息工程 |
|
|
|
|
基于改进生成对抗网络的飞参数据异常检测方法 |
张鹏1( ),田子都2( ),王浩1 |
1. 中国民航大学 工程技术训练中心,天津 300300 2. 中国民航大学 电子信息与自动化学院,天津 300300 |
|
Flight parameter data anomaly detection method based on improved generative adversarial network |
Peng ZHANG1( ),Zi-du TIAN2( ),Hao WANG1 |
1. Engineering Training Center, Civil Aviation University of China, Tianjin 300300, China 2. College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China |
1 |
CHANDOLA V, BANERJEE A, KUMAR V Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41 (3): 1- 58
|
2 |
ZHAO W, LI L, ALAM S, et al An incremental clustering method for anomaly detection in flight data[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103406
doi: 10.1016/j.trc.2021.103406
|
3 |
彭宇, 何永福, 王少军, 等 飞行数据异常检测技术综述[J]. 仪器仪表学报, 2019, 40 (3): 1- 13 PENG Yu, HE Yong-fu, WANG Shao-jun, et al Flight data anomaly detection: a survey[J]. Chinese Journal of Scientific Instrument, 2019, 40 (3): 1- 13
|
4 |
孙文柱, 曲建岭, 袁涛, 等 基于改进SVDD的飞参数据新异检测方法[J]. 仪器仪表学报, 2014, 35 (4): 932- 939 SUN Wen-zhu, QU Jian-ling, YUAN Tao, et al Flight data novelty detection method based on improved SVDD[J]. Chinese Journal of Scientific Instrument, 2014, 35 (4): 932- 939
|
5 |
LI L, DAS S, JOHN HANSMAN R, et al Analysis of flight data using clustering techniques for detecting abnormal operations[J]. Journal of Aerospace Information Systems, 2015, 12 (9): 587- 598
doi: 10.2514/1.I010329
|
6 |
MELNYK I, YADAV P, STEINBACH M, et al. Detection of precursors to aviation safety incidents due to human factors [C]// 13th IEEE International Conference on Data Mining Workshops. Dallas: IEEE, 2013: 407-412.
|
7 |
MELNYK I, BANERJEE A, MATTHEWS B, et al. Semi-Markov switching vector autoregressive model-based anomaly detection in aviation systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 1065-1074.
|
8 |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers [C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 93-104.
|
9 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al Generative adversarial nets[J]. Communications of the ACM, 2020, 63 (11): 139- 144
doi: 10.1145/3422622
|
10 |
SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide Marker discovery [C]// International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 146-157.
|
11 |
ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection[C]// 2018 IEEE 18th International Conference on Data Mining Workshops. Singapore: IEEE, 2018: 727-736.
|
12 |
YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4471-4480.
|
13 |
陈雪云, 黄小巧, 谢丽 基于多尺度条件生成对抗网络血细胞图像分类检测方法[J]. 浙江大学学报: 工学版, 2021, 55 (9): 1772- 1781 CHEN Xue-yun, HUANG Xiao-qiao, XIE Li Classification and detection method of blood cells images based on multi-scale conditional generative adversarial network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (9): 1772- 1781
|
14 |
XIA B, BAI Y, YIN J, et al LogGAN: a log-level generative adversarial network for anomaly detection using permutation event modeling[J]. Information Systems Frontiers, 2021, 23 (2): 285- 298
doi: 10.1007/s10796-020-10026-3
|
15 |
张克明, 蔡远文, 任元 基于生成对抗网络的航天异常事件检测方法[J]. 北京航空航天大学学报, 2019, 45 (7): 1329- 1336 ZHANG Ke-ming, CAI Yuan-wen, REN Yuan Space anomaly events detection approach based on generative adversarial nets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (7): 1329- 1336
|
16 |
ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks [EB/OL]. (2017-01-17)[2022-09-29]. https://arxiv.org/pdf/1701.04862.pdf.
|
17 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks [C]// Proceedings of the 34th International Conference on Machine Learning. Sydney: PMLR, 2017: 214-223.
|
18 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [C]// 4th International Conference on Learning Representations. San Juan: [s. n. ], 2016.
|
19 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANS [C]// Advances in Neural Information Processing Systems. Long Beach: Curran Associates, 2017: 30.
|
20 |
DONAHUE J, KRÄHENBÜHL P, DARRELL T. Adversarial feature learning [C]// 5th International Conference on Learning Representations. Toulon: [s. n.], 2017.
|
21 |
DAS S, MATTHEWS B L, SRIVASTAVA A N, et al. Multiple kernel learning for heterogeneous anomaly detection: algorithm and aviation safety case study [C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2010: 47-56.
|
22 |
ZHAO Y, NASRULLAH Z, LI Z Pyod: a python toolbox for scalable outlier detection[J]. Journal of Machine Learning Research, 2019, 20 (5): 1- 7
|
23 |
RASMUSSEN C E. Gaussian processes in machine learning [C]// Summer School on Machine Learning. Berlin: Springer, 2003: 63-71.
|
24 |
VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|