计算机与控制工程 |
|
|
|
|
结合大气散射模型的生成对抗网络去雾算法 |
屠杭垚( ),王万良*( ),陈嘉诚,李国庆,吴菲 |
浙江工业大学 计算机科学与技术学院,浙江 杭州 310014 |
|
Dehazing algorithm combined with atmospheric scattering model based on generative adversarial network |
Hang-yao TU( ),Wan-liang WANG*( ),Jia-chen CHEN,Guo-qing LI,Fei WU |
School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China |
引用本文:
屠杭垚,王万良,陈嘉诚,李国庆,吴菲. 结合大气散射模型的生成对抗网络去雾算法[J]. 浙江大学学报(工学版), 2022, 56(2): 225-235.
Hang-yao TU,Wan-liang WANG,Jia-chen CHEN,Guo-qing LI,Fei WU. Dehazing algorithm combined with atmospheric scattering model based on generative adversarial network. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 225-235.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.02.002
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I2/225
|
1 |
卜令兵, 袁静, 高爱臻, 等 基于激光云高仪的雾霾过程探测[J]. 光子学报, 2014, 43 (9): 64- 69 BU Ling-bing, YUAN Jing, GAO Ai-zhen, et al Analysis of haze-fog events based on laser ceilometer[J]. Acta Photonics Sinica, 2014, 43 (9): 64- 69
|
2 |
曲晨, 毕笃彦 基于懒惰随机游走的雾天含噪图像清晰 化[J]. 光学学报, 2018, 38 (4): 103- 112 QU Chen, BI Du-yan Clearness for foggy and noisy image based on lazy random walk[J]. Acta Optica Sinica, 2018, 38 (4): 103- 112
|
3 |
MIN X, ZHAI G, GU K, et al Quality evaluation of image dehazing methods using synthetic hazy images[J]. IEEE Transactions on Multimedia, 2019, 21 (9): 2319- 2333
doi: 10.1109/TMM.2019.2902097
|
4 |
DOU Z, HAN Y, SHENG W, et al Image dehaze using alternating Laplacian and Beltrami regularizations[J]. Journal of Electronic Imaging, 2015, 24 (2): 023004
doi: 10.1117/1.JEI.24.2.023004
|
5 |
覃宏超, 李炎炎, 龙伟, 等 基于引导滤波和暗原色先验理论透射率估值的视频去雾算法[J]. 浙江大学学报:工学版, 2018, 52 (7): 1302- 1309 QIN Hong-chao, LI Yan-yan, LONG Wei, et al Real-time video dehazing using guided filtering and transmissivity estimated based on dark channel prior theory[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (7): 1302- 1309
|
6 |
JIN W, MI Z, WU X, et al. Single image de-haze based on a new dark channel estimation method [C]// 2012 IEEE International Conference on Computer Science and Automation Engineering. Zhangjiajie: IEEE , 2012: 791-795.
|
7 |
ENGIN D, GENC A, KEMAL E H. Cycle-dehaze: enhanced cyclegan for single image dehazing [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE , 2018: 825-833.
|
8 |
LI C, ZHAO X, ZHANG Z, et al Generative adversarial dehaze mapping nets[J]. Pattern Recognition Letters, 2019, 119: 238- 244
doi: 10.1016/j.patrec.2017.11.021
|
9 |
YANG D, SUN J. Proximal dehaze-net: a prior learning-based deep network for single image dehazing[C]// Proceedings of the European Conference on Computer Vision. Munich: IEEE, 2018: 702-717.
|
10 |
KUANAR S, RAO K R, MAHAPATRA D, et al. Night time haze and glow removal using deep dilated convolutional network [EB/OL]. [2021-03-01]. https://arxiv.53yu.com/ftp/arxiv/papers/1902/1902.00855.pdf.
|
11 |
HE K, SUN J, TANG X Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (12): 2341- 235
|
12 |
金仙力, 张威, 刘林峰 基于引导滤波和自适应容差的图像去雾算法[J]. 通信学报, 2020, 41 (5): 27- 36 JIN Xian-li, ZHANG Wei, LIU Lin-feng Image defogging algorithm based on guided filtering and adaptive tolerance[J]. Journal of Communications, 2020, 41 (5): 27- 36
doi: 10.11959/j.issn.1000-436x.2020078
|
13 |
LI B, PENG X, WANG Z, et al. Aod-net: all-in-one dehazing network[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4770-4778.
|
14 |
肖进胜, 申梦瑶, 雷俊锋, 等 基于生成对抗网络的雾霾场景图像转换算法[J]. 计算机学报, 2020, 43 (1): 165- 176 XIAO Jin-sheng, SHEN Meng-yao, LEI Jun-feng, et al Image conversion algorithm for haze scenes based on generative adversarial networks[J]. Chinese Journal of Computers, 2020, 43 (1): 165- 176
doi: 10.11897/SP.J.1016.2020.00165
|
15 |
MIRZA M, OSINDERO S. Conditional generative adversarial nets [EB/OL]. [2021-03-01]. https://arxiv.53yu.com/pdf/1411.1784.pdf .
|
16 |
ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1125-1134.
|
17 |
JIA Q, MA Z. Patch-based generative adversarial network for single image haze removal [C]// 2020 International Conference on Computer Engineering and Application. Guangzhou: IEEE, 2020: 882-886.
|
18 |
刘国, 吕群波, 刘扬阳 基于自适应暗原色的单幅图像去雾算法[J]. 光子学报, 2018, 47 (2): 179- 186 LIU Guo, LV Qun-bo, LIU Yang-yang Single image dehazing algorithm based on adaptive dark channel prior[J]. Acta Photonica Sinica, 2018, 47 (2): 179- 186
|
19 |
WANG J B, HE N, ZHANG L L, et al Single image dehazing with a physical model and dark channel prior[J]. Neurocomputing, 2015, 149: 718- 728
doi: 10.1016/j.neucom.2014.08.005
|
20 |
PAN J, SUN D, PFISTER H, et al Deblurring images via dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40 (10): 2315- 2328
|
21 |
LI S, REN W, ZHANG J, et al Single image rain removal via a deep decomposition-composition network[J]. Computer Vision and Image Understanding, 2019, 186: 48- 57
doi: 10.1016/j.cviu.2019.05.003
|
22 |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-assisted Intervention. Munich: Springer, 2015: 234-241.
|
23 |
TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// International Conference on Computational Intelligence for Modelling. Vienna: IEEE, 2005, 1: 695-701.
|
24 |
KUMAR A, SHAIKH A M, LI Y, et al Pruning filters with L1-norm and capped L1-norm for CNN compression[J]. Applied Intelligence, 2021, 51 (2): 1152- 1160
doi: 10.1007/s10489-020-01894-y
|
25 |
KAMAL U, TONMOY T I, DAS S, et al Automatic traffic sign detection and recognition using SegU-Net and a modified Tversky loss function with L1-constraint[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (4): 1467- 1479
|
26 |
LEE C P, LIN C J A study on L2-loss (squared hinge-loss) multiclass SVM[J]. Neural Computation, 2013, 25 (5): 1302- 1323
doi: 10.1162/NECO_a_00434
|
27 |
WANG L T, HOOVER N E, PORTER E H, et al. SSIM: a software levelized compiled-code simulator [C]// Proceedings of the 24th ACM/IEEE Design Automation Conference. New York: ACM, 1987: 2-8.
|
28 |
HUYNH-THU Q, GHANBARI M The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. Telecommunication Systems, 2012, 49 (1): 35- 48
doi: 10.1007/s11235-010-9351-x
|
29 |
GAO Y, HU H M, LI B, et al Detail preserved single image dehazing algorithm based on airlight refinement[J]. IEEE Transactions on Multimedia, 2018, 21 (2): 351- 362
|
30 |
CAI B, XU X, JIA K, et al Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25 (11): 5187- 5198
doi: 10.1109/TIP.2016.2598681
|
31 |
REN W, PAN J, ZHANG H, et al Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128 (1): 240- 259
doi: 10.1007/s11263-019-01235-8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|