Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (4): 680-686    DOI: 10.3785/j.issn.1008-973X.2018.04.010
自动化技术     
基于灰狼算法与小波神经网络的目标威胁评估
傅蔚阳1, 刘以安1, 薛松2
1. 江南大学 物联网工程学院, 江苏 无锡 214122;
2. 中国船舶重工集团公司第七研究院 电子部, 北京 100192
Target threat assessment using grey wolf optimization and wavelet neural network
FU Wei-yang1, LIU Yi-an1, XUE Song2
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Electronic Department, The Seventh Research Institute of China Shipbuilding Industry Corporation, Beijing 100192, China
 全文: PDF(1214 KB)   HTML
摘要:

为了提高目标威胁度评估的精确度,建立反向学习灰狼算法(OGWO)优化小波神经网络的目标威胁评估模型(OGWO-WNN),提出基于该模型的算法.该模型使用反向学习策略(OBL)优化灰狼算法(GWO),通过改进后的灰狼算法优化小波神经网络的各权值和小波基函数的平移因子与伸缩因子,使优化后的小波神经网络能够对威胁度测试样本集作更好的预测.实验结果显示,采用反向学习灰狼算法能够更好地优化小波神经网络的权值与平移、伸缩因子,使建立的小波神经网络目标威胁评估模型具有更高的预测精度和更强的泛化能力,能够精准、有效地实现目标威胁评估.

Abstract:

Opposition-based learning grey wolf optimization (OGWO) and wavelet neural network model (OGWO-WNN) was established in order to improve the air targets threat estimation accuracy, and the algorithm based on the model was proposed. Opposition-based learning (OBL) was adopted to optimize grey wolf optimization (GWO) algorithm, and OGWO was employed to simultaneously optimize the weights and translation and scalability factors in WNN. Target threat database was adopted to test the performance of OGWO-WNN in target threat prediction. The experimental results show that the weights and translation and scalability factors in WNN can be better optimized. The air target threat assessment model has higher prediction precision and better generalization ability, and can accurately and effectively complete target threat estimation.

收稿日期: 2017-07-27
CLC:  TP391  
基金资助:

江苏省自然科学基金资助项目(BK20160162)..

通讯作者: 刘以安,男,教授.orcid.org/0000-0003-4989-9400.     E-mail: lya_wx@jiangnan.edu.cn
作者简介: 傅蔚阳(1993-),男,硕士生,从事人工智能的研究.orcid.org/0000-0002-4399-6819.E-mail:18806186287@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

傅蔚阳, 刘以安, 薛松. 基于灰狼算法与小波神经网络的目标威胁评估[J]. 浙江大学学报(工学版), 2018, 52(4): 680-686.

FU Wei-yang, LIU Yi-an, XUE Song. Target threat assessment using grey wolf optimization and wavelet neural network. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 680-686.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.04.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I4/680

[1] 姚磊, 王红明, 郑锋, 等. 空中目标威胁估计的模糊聚类方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2010, 34(6):1159-1161. YAO Lei, WANG Hong-ming, ZHENG Feng, et al. Study fuzzy clustering method of air target threat assessment[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering, 2010, 34(6):1159-1161.
[2] 王改革, 郭立红, 段红, 等. 基于萤火虫算法优化BP神经网络的目标威胁估计[J]. 吉林大学学报:工学版, 2013, 43(4):1064-1069. WANG Gai-ge, GUO Li-hong, DUAN Hong, et al. Target threat assessment using glowworm swarm optimization and BP neural network[J]. Journal of Jilin University:Engineering and Technology Edition, 2013, 43(4):1064-1069.
[3] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf optimizer[J]. Advances in Engineering Software, 2014, 69(3):46-61.
[4] MADADI A, MOTLAGH M M. Optimal control of DC motor using grey wolf optimizer algorithm[J]. Technical Journal of Engineering and Applied Science, 2014, 4(4):373-379.
[5] DELYON B, JUDITSKY A, BENVENISTE A. Accuracy analysis for wavelet approximations[J]. IEEE Transactions on Neural Networks, 1995, 6(2):332-348.
[6] SONG H, SULAIMAN M, MOHAMED M. An application of grey wolf optimizer for solving combined economic emission dispatch problems[J]. International Review on Modeling and Simulation, 2014, 7(5):838-844.
[7] 龙文, 赵东泉, 徐松金. 求解约束优化问题的改进灰狼优化算法[J]. 计算机应用, 2015, 35(9):2590-2595. LONG Wen, ZHAO Dong-quan, XU Song-jin. Improved grey wolf optimization algorithm for constrained optimization problem[J]. Journal of Computer Applications, 2015, 35(9):2590-2595.
[8] EI-GAAFARY A A M, MOHAMED Y S, HEMEIDA A M, et al. Grey wolf optimization for multi input multi output system[J]. Universal Journal of Communications and Networks, 2015, 3(1):1-6.
[9] 康岚兰, 董文永, 田降森. 一种自适应柯西变异的反向学习粒子群优化算法[J]. 计算机科学, 2015, 42(10):226-231. KANG Lan-lan, DONG Wen-yong, TIAN Jiang-sen. Opposition-based particle swarm optimization with adaptive Cauchy mutation[J]. Computer Science, 2015, 42(10):226-231.
[10] DEB S, DEB S, GANDOMI A H, et al. Opposition-based krill herd algorithm with Cauchy mutation and position clamping[J]. Neurocomputing, 2016, 177(C):147-157.
[11] 周新宇,吴志健,王晖,等. 一种精英反向学习的粒子群优化算法[J].电子学报,2013,41(8):1647-1652. ZHOU Xin-yu, WU Zhi-jian, WANG Hui, et a1. Elite opposition-based particle swam optimization[J]. Acta E1ectronica Sinica, 2013, 41(8):1647-1652.
[12] 刘海波, 王和平, 沈立顶. 基于SAPSO优化灰色神经网络的空中目标威胁估计[J]. 西北工业大学学报, 2016, 34(1):25-32. LIU Hai-bo, WANG He-ping, SHEN Li-ding. Target threat assessment using SAPSO and grey neural network[J]. Journal of Northwestern Polytechnical University, 2016, 34(1):25-32.
[13] 王改革, 郭立红, 段红, 等. 基于Elman_AdaBoost强预测器的目标威胁评估模型及算法[J]. 电子学报, 2012, 40(5):901-906. WANG Gai-ge, GUO Li-hong, DUAN Hong, et al. The model and algorithm for the target threat assessment based on Elman_AdaBoost strong predictor[J]. Acta Electronica Sinica, 2012, 40(5):901-906.
[14] KASIVISWANATHAN K S, HE J, SUDHEER K P, et al. Potential application of wavelet neural network ensemble to forecast stream flow for flood management[J]. Journal of Hydrology, 2016, 53(6):161-173.
[15] WANG G, GUO L, DUAN H. Wavelet neural network using multiple wavelet functions in target threat assessment[J]. The Scientific World Journal, 2013, 13(1):632437.
[16] YAO Y, ZHAO J, WANG Y, et al. MADM of threat assessment with attempt of target[J]. Advances in Technology and Management, 2012, 33(2):171-179.
[17] HASSANIN M F, SHOEB A M, HASSANIEN A E. Grey wolf optimizer-based back-propagation neural network algorithm[C]//Computer Engineering Conference. Cairo:[s. n.], 2017.

[1] 韩勇, 宁连举, 郑小林, 林炜华, 孙中原. 基于社交信息和物品曝光度的矩阵分解推荐[J]. 浙江大学学报(工学版), 2019, 53(1): 89-98.
[2] 郑洲, 张学昌, 郑四鸣, 施岳定. 基于区域增长与统一化水平集的CT肝脏图像分割[J]. 浙江大学学报(工学版), 2018, 52(12): 2382-2396.
[3] 赵丽科, 郑顺义, 王晓南, 黄霞. 单目序列的刚体目标位姿测量[J]. 浙江大学学报(工学版), 2018, 52(12): 2372-2381.
[4] 何杰光, 彭志平, 崔得龙, 李启锐. 局部维度改进的教与学优化算法[J]. 浙江大学学报(工学版), 2018, 52(11): 2159-2170.
[5] 李志, 单洪, 马涛, 黄郡. 基于反向标签传播的移动终端用户群体发现[J]. 浙江大学学报(工学版), 2018, 52(11): 2171-2179.
[6] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[7] 魏小峰, 程承旗, 陈波, 王海岩. 基于独立边数的链码方法[J]. 浙江大学学报(工学版), 2018, 52(9): 1686-1693.
[8] 陈荣华, 王鹰汉, 卜佳俊, 于智, 高斐. 基于KNN算法与局部回归的网站无障碍采样评估[J]. 浙江大学学报(工学版), 2018, 52(9): 1702-1708.
[9] 张承志, 冯华君, 徐之海, 李奇, 陈跃庭. 图像噪声方差分段估计法[J]. 浙江大学学报(工学版), 2018, 52(9): 1804-1810.
[10] 刘洲洲, 李士宁, 李彬, 王皓, 张倩昀, 郑然. 基于弹性碰撞优化算法的传感云资源调度[J]. 浙江大学学报(工学版), 2018, 52(8): 1431-1443.
[11] 王勇超, 祝凯林, 吴奇轩, 鲁东明. 基于局部渲染的高精度模型自适应展示技术[J]. 浙江大学学报(工学版), 2018, 52(8): 1461-1466.
[12] 孙念, 李玉强, 刘爱华, 刘春, 黎威威. 基于松散条件下协同学习的中文微博情感分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1452-1460.
[13] 郑守国, 崔雁民, 王青, 杨飞, 程亮. 飞机装配现场数据采集平台设计[J]. 浙江大学学报(工学版), 2018, 52(8): 1526-1534.
[14] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293.
[15] 张廷蓉, 滕奇志, 李征骥, 卿粼波, 何小海. 岩心三维CT图像超分辨率重建[J]. 浙江大学学报(工学版), 2018, 52(7): 1294-1301.