计算机技术 |
|
|
|
|
基于自相似嵌入和全局特征重排序的图像检索方法 |
陈捷丰( ),姚金良*( ) |
杭州电子科技大学 计算机学院,浙江 杭州 310018 |
|
Image retrieval method based on self-similar embedding and global feature reranking |
Jiefeng CHEN( ),Jinliang YAO*( ) |
College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
1 |
ARANDJELOVIC R, GRONAT P, TORII A, et al. NetVLAD: CNN architecture for weakly supervised place recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5297–5307.
|
2 |
YANDEX A B, LEMPITSKY V. Aggregating local deep features for image retrieval [C]// IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1269–1277.
|
3 |
BABENKO A, SLESAREV A, CHIGORIN A, et al. Neural codes for image retrieval [C]// European Conference on Computer Vision. Zurich: Springer Nature Publishing, 2014: 584−599.
|
4 |
HE K, LU Y, SCLAROFF S. Local descriptors optimized for average precision [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 596–605.
|
5 |
NOH H, ARAUJO A, SIM J, et al. Large-scale image retrieval with attentive deep local features [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3476–3485.
|
6 |
REVAUD J, DE SOUZA C, HUMENBERGER M, et al R2d2: reliable and repeatable detector and descriptor[J]. Advances in Neural Information Processing Systems, 2019, 32: 12405- 12415
|
7 |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering [C]// IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 815–823.
|
8 |
HU J, LU J, TAN Y P. Discriminative deep metric learning for face verification in the wild [C]// IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1875–1882.
|
9 |
DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4690–4699.
|
10 |
KALANTIDIS Y, MELLINA C, OSINDERO S. Cross-dimensional weighting for aggregated deep convolutional features [C]// European Conference on Computer Vision. Amsterdam: Springer International Publishing, 2016: 685–701.
|
11 |
TOLIAS G, SICRE R, JÉGOU H. Particular object retrieval with integral max-pooling of CNN activations [EB/OL]. (2016−02−24)[2023−10−13]. https://arxiv.org/abs/1511.05879.
|
12 |
RADENOVIĆ F, TOLIAS G, CHUM O Fine-tuning CNN image retrieval with No human annotation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41 (7): 1655- 1668
doi: 10.1109/TPAMI.2018.2846566
|
13 |
SHAO S, CHEN K, KARPUR A, et al. Global features are all you need for image retrieval and reranking [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 11002–11012.
|
14 |
NG T, BALNTAS V, TIAN Y, et al. SOLAR: second-order loss and attention for image retrieval [C]// European Conference on Computer Vision. Glasgow: Springer International Publishing, 2020: 253−270.
|
15 |
WU H, WANG M, ZHOU W, et al. Learning token-based representation for image retrieval [C]// AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2022, 36(3): 2703−2711.
|
16 |
YANG M, HE D, FAN M, et al. DOLG: single-stage image retrieval with deep orthogonal fusion of local and global features [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 11752–11761.
|
17 |
SONG C H, YOON J, CHOI S, et al. Boosting vision transformers for image retrieval [C]// IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 107–117.
|
18 |
LOWE D G Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2): 91- 110
doi: 10.1023/B:VISI.0000029664.99615.94
|
19 |
BAY H, ESS A, TUYTELAARS T, et al Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110 (3): 346- 359
doi: 10.1016/j.cviu.2007.09.014
|
20 |
DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net: a trainable cnn for joint detection and description of local features [EB/OL]. (2019−05−09)[2023−11−28]. https://arxiv.org/abs/1905.03561.
|
21 |
TOLIAS G, JENICEK T, CHUM O. Learning and aggregating deep local descriptors for instance-level recognition [C]// European Conference on Computer Vision. Glasgow: Springer International Publishing, 2020: 460−477.
|
22 |
WEINZAEPFEL P, LUCAS T, LARLUS D, et al. Learning super-features for image retrieval [EB/OL]. (2022−01−31)[2023−12−17]. https://arxiv.org/abs/2201.13182.
|
23 |
TAN F, YUAN J, ORDONEZ V. Instance-level image retrieval using reranking transformers [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 12085–12095.
|
24 |
LEE S, SEONG H, LEE S, et al. Correlation verification for image retrieval [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5364–5374.
|
25 |
KANG D, KWON H, MIN J, et al. Relational embedding for few-shot classification [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 8802–8813.
|
26 |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module [C]// European Conference on Computer Vision. Munich: Springer International Publishing, 2018: 3−19.
|
27 |
GORDO A, RADENOVIC F, BERG T. Attention-based query expansion learning [C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 172−188.
|
28 |
ARANDJELOVIĆ R, ZISSERMAN A. Three things everyone should know to improve object retrieval [C]// IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2911–2918.
|
29 |
GORDO A, ALMAZÁN J, REVAUD J, et al End-to-end learning of deep visual representations for image retrieval[J]. International Journal of Computer Vision, 2017, 124 (2): 237- 254
doi: 10.1007/s11263-017-1016-8
|
30 |
WEYAND T, ARAUJO A, CAO B, et al. Google landmarks dataset v2–A large-scale benchmark for instance-level recognition and retrieval [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2575–2584.
|
31 |
RADENOVIC F, ISCEN A, TOLIAS G, et al. Revisiting Oxford and paris: large-scale image retrieval benchmarking [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5706–5715.
|
32 |
PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching [C]// IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1–8.
|
33 |
CAO B, ARAUJO A, SIM J. Unifying deep local and global features for image search [C]// European Conference on Computer Vision. Glasgow: Springer International Publishing, 2020: 726−743.
|
34 |
SONG C H, HAN H J, AVRITHIS Y. All the attention you need: global-local, spatial-channel attention for image retrieval [C]// IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 439–448.
|
35 |
SONG Y, ZHU R, YANG M, et al. Dalg: Deep attentive local and global modeling for image retrieval [EB/OL]. (2022−07−01)[2024−03−11]. https://arxiv.org/abs/2207.00287.
|
36 |
ZHANG Z, WANG L, ZHOU L, et al. Learning spatial-context-aware global visual feature representation for instance image retrieval [C]// IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 11216–11225.
|
37 |
LEE S, LEE S, SEONG H, et al. Revisiting self-similarity: structural embedding for image retrieval [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 23412–23421.
|
38 |
TOLIAS G, AVRITHIS Y, JÉGOU H Image search with selective match kernels: aggregation across single and multiple images[J]. International Journal of Computer Vision, 2016, 116 (3): 247- 261
doi: 10.1007/s11263-015-0810-4
|
39 |
TEICHMANN M, ARAUJO A, ZHU M, et al. Detect-to-retrieve: efficient regional aggregation for image search [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5109–5118.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|