Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 929-937    DOI: 10.3785/j.issn.1008-973X.2025.05.006
计算机技术、信息工程     
多方引导前景增强的行人重识别方法
刘俊婧1(),郑宛露1,郭子强1,王少荣1,2,3,*()
1. 北京林业大学 信息学院,北京 100083
2. 国家林业草原林业智能信息处理工程技术研究中心,北京 100083
3. 北京市虚拟仿真与可视化工程技术研究中心,北京 100871
Person re-identification method based on multi-part guided foreground enhancement
Junjing LIU1(),Wanlu ZHENG1,Ziqiang GUO1,Shaorong WANG1,2,3,*()
1. School of Information Science and Technology, Beijing Forest University, Beijing 100083, China
2. Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China
3. Beijing Virtual Simulation and Visualization Engineering Center, Beijing 100871, China
 全文: PDF(1236 KB)   HTML
摘要:

为了解决行人重识别模型性能对背景环境因素过于依赖的问题, 提出多方引导前景增强的行人重识别方法. 该方法通过掩码引导增强和自增强策略,提升了模型对行人前景的关注,同时保留一定的背景信息,有效减轻了对背景信息的依赖,增强了模型的泛化能力. 在骨干网络中引入瓶颈优化模块,利用空洞卷积,在保持原有参数规模的前提下,有效增大了模型的感受野,提升了模型的整体性能. 实验结果表明, 提出的模型在Market1501和DukeMTMC_reID数据集上分别取得了95%和88.3%的Rank-1准确率. 验证了多方引导前景增强的行人重识别方法的有效性,通过前景增强并结合一定的背景信息,有效提升了基线模型的性能.

关键词: 行人重识别人体解析背景变化前景增强掩码引导增强    
Abstract:

A multi-part guided foreground enhancement method for person re-identification was proposed in order to solve the problem that the performance of person re-identification model was overly depend on background environmental factors. The model’s attention to the person’s foreground was enhanced by employing mask-guided enhancement and self-enhancement strategies, while retaining some background information. This effectively reduced the model’s dependence on background information and improved its generalization ability. A bottleneck optimization module was integrated into the backbone network, utilizing dilated convolutions to enlarge the model’s receptive field while maintaining the original parameter scale, thereby improving the overall performance of the model. The experimental results demonstrated that the proposed model achieved Rank-1 accuracies of 95% and 88.3% on the Market1501 and DukeMTMC_reID datasets, respectively. The effectiveness of the multi-part guided foreground enhancement method was verified, which strengthened the foreground while incorporating appropriate background information, and significantly enhanced the performance of the baseline model.

Key words: person re-identification    human parsing    background change    foreground enhancement    mask-guided enhancement
收稿日期: 2024-07-06 出版日期: 2025-04-25
CLC:  TP 391  
通讯作者: 王少荣     E-mail: L_JunJing@bjfu.edu.cn;shaorongwang@hotmail.com
作者简介: 刘俊婧(1999—),女,硕士,从事计算机视觉的研究. orcid.org/0000-0001-8800-8194. E-mail:L_JunJing@bjfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘俊婧
郑宛露
郭子强
王少荣

引用本文:

刘俊婧,郑宛露,郭子强,王少荣. 多方引导前景增强的行人重识别方法[J]. 浙江大学学报(工学版), 2025, 59(5): 929-937.

Junjing LIU,Wanlu ZHENG,Ziqiang GUO,Shaorong WANG. Person re-identification method based on multi-part guided foreground enhancement. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 929-937.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.006        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/929

图 1  人体解析预测的示例图
图 2  行人图像处理
图 3  强基线网络
测试类型${\mathrm{Rank}} {\text{-}} 1 $${\mathrm{Rank}} {\text{-}} 5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original93.297.798.784.1
Foreground74.887.090.851.8
Background4.38.812.51.4
表 1  使用Market1501数据集原始图像的训练结果
测试类型${\mathrm{Rank}} {\text{-}} 1 $${\mathrm{Rank}} {\text{-}} 5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original85.393.496.074.6
Foreground52.267.172.431.5
Background6.313.518.02.5
表 2  使用DukeMTMC数据集原始图像的训练结果
测试类型${\mathrm{Rank}} {\text{-}} 1 $${\mathrm{Rank}} {\text{-}}5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original35.153.061.617.3
Foreground31.348.456.113.1
Background18.437.647.78.8
表 3  使用Market1501数据集背景图像的训练结果
测试类型${\mathrm{Rank}}{\text{-}} 1 $${\mathrm{Rank}} {\text{-}} 5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original52.569.475.135.7
Foreground31.145.751.615.9
Background39.859.667.722.6
表 4  使用DukeMTMC数据集背景图像的训练结果
测试类型${\mathrm{Rank}} {\text{-}}1 $${\mathrm{Rank}} {\text{-}} 5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original68.486.391.345.4
Foreground90.696.197.775.5
Background2.04.35.80.7
表 5  使用Market1501数据集前景图像的训练结果
测试类型${\mathrm{Rank}} {\text{-}} 1 $${\mathrm{Rank}} {\text{-}}5 $${\mathrm{Rank}} {\text{-}} 10 $${\mathrm{mAP}} $
Original57.974.579.839.3
Foreground77.187.090.160.1
Background2.35.98.41.0
表 6  使用DukeMTMC数据集前景图像的训练结果
图 4  基于多方引导前景增强的行人重识别模型
图 5  瓶颈优化模块
硬件/软件型号/版本号
CPUIntel Xeon Silver 4210R@2.40 GHz
存储14 TB SATA
内存256 GB DDR4-2933
GPU4*NVIDIA RTX 3090 24 GB
操作系统Ubuntu 20.04.3
GPU驱动510.47.03
CUDA11.7
CUDNN8.5.0
Python3.8.0
Pytorch1.13.1+cu117
表 7  行人重识别模型的实验硬件与软件环境配置
参数数值
训练次数(epoch)120
批大小(batch_size)64
初始学习率(lr)3.5×10?4
学习衰减率(lr_decay)0.1
优化函数(optimizer)Adam
动量大小(momentum)0.9
权重衰减系数(weight_decay)0.000 5
随机水平翻转概率(random horizontal flip probability)0.5
随机擦除概率(erase_probability)0.5
表 8  行人重识别模型训练参数的配置
方法Market1501DukeMTMC
Rank-1mAPRank-1${\mathrm{mAP}} $
TriNet[21]84.969.172.453.5
ARP[22]87.066.973.955.5
JLML[23]85.165.5
AlignedReID[24]92.682.181.267.4
HA-CNN[25]91.275.780.563.8
PCB[26]93.881.683.369.2
Mancs[27]93.182.384.971.8
OSNet[28]94.884.987.673.5
Auto-ReID[29]94.585.188.575.1
HOReid[30]94.284.986.975.6
CBDB-Net[31]94.485.087.774.3
DRL-Net[32]94.786.988.176.6
MGFE(本文方法)95.087.588.377.9
表 9  提出方法与现有行人重识别方法的性能对比
训练集->测试集方法${\mathrm{Rank}} \text{-} 1 $/%${\mathrm{mAP}} $/%
Market1501(Original)->
Market1501(Foreground)
Baseline74.851.8
+MPG77.956.2
+BOM78.256.6
MGFE78.856.9
DukeMTMC(Original)->
DukeMTMC(Foreground)
Baseline52.231.5
+MPG54.534.6
+BOM54.834.9
MGFE55.335.5
表 10  模块组合对模型前景识别性能的影响
训练集->测试集方法${\mathrm{Rank}} \text{-} 1 $/%${\mathrm{mAP}} $/%
Market1501(Original)->
Market1501(Original)
Baseline93.284.1
+MPG94.385.7
+BOM94.585.9
MGFE95.087.5
DukeMTMC(Original)->
DukeMTMC(Original)
Baseline85.374.6
+MPG86.075.0
+BOM87.476.9
MGFE88.377.9
表 11  各模块对提升模型识别性能的有效性实验结果
训练集->测试集方法${\mathrm{Rank}} \text{-} 1 $/%${\mathrm{mAP}} $/%
Market1501(Original)->
DukeMTMC(Original)
Baseline28.115.1
+MPG30.715.9
+BOM30.016.4
MGFE31.416.9
DukeMTMC(Original)->
Market1501(Original)
Baseline41.217.2
+MPG42.918.5
+BOM43.819.7
MGFE44.720.2
表 12  各模块对提升模型泛化性的有效性实验结果
1 YE M, SHEN J, LIN G, et al Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 2872- 2893
doi: 10.1109/TPAMI.2021.3054775
2 ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 1367-1376.
3 YAO H, ZHANG S, HONG R, et al Deep representation learning with part loss for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28 (6): 2860- 2871
doi: 10.1109/TIP.2019.2891888
4 ZHAO L, LI X, ZHUANG Y, et al. Deeply-learned part-aligned representations for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Venice: IEEE, 2017: 3219-3228.
5 SU C, ZHANG S, XING J, et al. Deep attributes driven multi-camera person re-identification [C]// Proceedings of the European Conference on Computer Vision . Amsterdam: Springer, 2016: 475-491.
6 LIN Y, ZHENG L, ZHENG Z, et al Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151- 161
doi: 10.1016/j.patcog.2019.06.006
7 MATSUKAWA T, SUZUKI E. Person re-identification using CNN features learned from combination of attributes [C]// 23rd International Conference on Pattern Recognition . Cancun: IEEE, 2016: 2428-2433.
8 HUANG H, LI D, ZHANG Z, et al. Adversarially occluded samples for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 5098-5107.
9 VARIOR R R, SHUAI B, LU J, et al. A siamese long short-term memory architecture for human Re-identification [C]// Proceedings of the European Conference on Computer Vision . Amsterdam: Springer, 2016: 135-153.
10 SONG C, HUANG Y, OUYANG W, et al. Mask-guided contrastive attention model for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1179-1188.
11 YE M, LIANG C, WANG Z, et al. Ranking optimization for person re-identification via similarity and dissimilarity [C]// Proceedings of the ACM International Conference on Multimedia. Brisbane: ACM, 2015: 1239-1242.
12 TIAN M, YI S, LI H, et al. Eliminating background-bias for robust person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 5794-5803.
13 ZHANG X, ZHU X, TANG M, et al. Deep learning for human parsing: a survey [EB/OL]. (2023-01-29)[2024-07-06]. https://arxiv.org/pdf/2301.12416.
14 刘俊婧, 郑宛露, 王少荣. 基于双重注意力及边缘约束的人体解析方法[EB/OL]. (2024-04-26)[2024-07-06]. https://github.com/shaorongwang/HumanParsing/blob/main/Human%20Parsing.pdf.
15 FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 3146-3154.
16 LUO H, JIANG W, GU Y, et al A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2019, 22 (10): 2597- 2609
17 PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module [C]// Proceedings of the British Machine Vision Conference . London: BMVA Press, 2018: 147-160.
18 ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Santiago: IEEE, 2015: 1116-1124.
19 ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Venice: IEEE, 2017: 3754-3762.
20 WANG X, DORETTO G, SEBASTIAN T, et al. Shape and appearance context modeling [C]// IEEE 11th International Conference on Computer Vision . Rio de Janeiro: IEEE, 2007: 1-8.
21 HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 1526-1535.
22 LI W, ZHAO R, XIAO T, et al. Deepreid: deep filter pairing neural network for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 152-159.
23 LI W, ZHU X, GONG S. Person re-identification by deep joint learning of multi-loss classification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: IJCAI Press, 2017: 2194-2200.
LI W, ZHU X, GONG S. Person re-identification by deep joint learning of multi-loss classification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . Melbourne: IJCAI Press, 2017: 2194-2200.
24 ZHANG X, LUO H, FAN X, et al. AlignedReID: surpassing human-level performance in person re-identification [EB/OL]. (2018-01-31)[2024-07-06]. https://arxiv.org/pdf/1711.08184.
25 LI W, ZHU X, GONG S. Harmonious attention network for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 2285-2294.
26 SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 480-496.
27 WANG C, ZHANG Q, HUANG C, et al. Mancs: a multi-task attentional network with curriculum sampling for person re-identification [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 365-381.
28 ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3702-3712.
29 QUAN R, DONG X, WU Y, et al. Auto-reid: searching for a part-aware convnet for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3750-3759.
30 WANG G, YANG S, LIU H, et al. High-order information matters: learning relation and topology for occluded person re-identification [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 6449-6458.
31 TAN H, LIU X, BIAN Y, et al Incomplete descriptor mining with elastic loss for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32 (1): 160- 171
[1] 王浩远,梁煜,张为. 融合多分辨率表征的实时烟雾分割算法[J]. 浙江大学学报(工学版), 2021, 55(12): 2334-2341.
[2] 闫禹铭,何剑锋,李殊昭,于慧敏,王锋,任周丰. 现实场景下行人身份识别[J]. 浙江大学学报(工学版), 2021, 55(11): 2022-2032.