计算机技术、信息工程 |
|
|
|
|
多方引导前景增强的行人重识别方法 |
刘俊婧1( ),郑宛露1,郭子强1,王少荣1,2,3,*( ) |
1. 北京林业大学 信息学院,北京 100083 2. 国家林业草原林业智能信息处理工程技术研究中心,北京 100083 3. 北京市虚拟仿真与可视化工程技术研究中心,北京 100871 |
|
Person re-identification method based on multi-part guided foreground enhancement |
Junjing LIU1( ),Wanlu ZHENG1,Ziqiang GUO1,Shaorong WANG1,2,3,*( ) |
1. School of Information Science and Technology, Beijing Forest University, Beijing 100083, China 2. Engineering Research Center for Forestry-oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China 3. Beijing Virtual Simulation and Visualization Engineering Center, Beijing 100871, China |
引用本文:
刘俊婧,郑宛露,郭子强,王少荣. 多方引导前景增强的行人重识别方法[J]. 浙江大学学报(工学版), 2025, 59(5): 929-937.
Junjing LIU,Wanlu ZHENG,Ziqiang GUO,Shaorong WANG. Person re-identification method based on multi-part guided foreground enhancement. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 929-937.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.006
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/929
|
1 |
YE M, SHEN J, LIN G, et al Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 2872- 2893
doi: 10.1109/TPAMI.2021.3054775
|
2 |
ZHENG L, ZHANG H, SUN S, et al. Person re-identification in the wild [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 1367-1376.
|
3 |
YAO H, ZHANG S, HONG R, et al Deep representation learning with part loss for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28 (6): 2860- 2871
doi: 10.1109/TIP.2019.2891888
|
4 |
ZHAO L, LI X, ZHUANG Y, et al. Deeply-learned part-aligned representations for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Venice: IEEE, 2017: 3219-3228.
|
5 |
SU C, ZHANG S, XING J, et al. Deep attributes driven multi-camera person re-identification [C]// Proceedings of the European Conference on Computer Vision . Amsterdam: Springer, 2016: 475-491.
|
6 |
LIN Y, ZHENG L, ZHENG Z, et al Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151- 161
doi: 10.1016/j.patcog.2019.06.006
|
7 |
MATSUKAWA T, SUZUKI E. Person re-identification using CNN features learned from combination of attributes [C]// 23rd International Conference on Pattern Recognition . Cancun: IEEE, 2016: 2428-2433.
|
8 |
HUANG H, LI D, ZHANG Z, et al. Adversarially occluded samples for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 5098-5107.
|
9 |
VARIOR R R, SHUAI B, LU J, et al. A siamese long short-term memory architecture for human Re-identification [C]// Proceedings of the European Conference on Computer Vision . Amsterdam: Springer, 2016: 135-153.
|
10 |
SONG C, HUANG Y, OUYANG W, et al. Mask-guided contrastive attention model for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1179-1188.
|
11 |
YE M, LIANG C, WANG Z, et al. Ranking optimization for person re-identification via similarity and dissimilarity [C]// Proceedings of the ACM International Conference on Multimedia. Brisbane: ACM, 2015: 1239-1242.
|
12 |
TIAN M, YI S, LI H, et al. Eliminating background-bias for robust person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 5794-5803.
|
13 |
ZHANG X, ZHU X, TANG M, et al. Deep learning for human parsing: a survey [EB/OL]. (2023-01-29)[2024-07-06]. https://arxiv.org/pdf/2301.12416.
|
14 |
刘俊婧, 郑宛露, 王少荣. 基于双重注意力及边缘约束的人体解析方法[EB/OL]. (2024-04-26)[2024-07-06]. https://github.com/shaorongwang/HumanParsing/blob/main/Human%20Parsing.pdf.
|
15 |
FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 3146-3154.
|
16 |
LUO H, JIANG W, GU Y, et al A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2019, 22 (10): 2597- 2609
|
17 |
PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module [C]// Proceedings of the British Machine Vision Conference . London: BMVA Press, 2018: 147-160.
|
18 |
ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Santiago: IEEE, 2015: 1116-1124.
|
19 |
ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Venice: IEEE, 2017: 3754-3762.
|
20 |
WANG X, DORETTO G, SEBASTIAN T, et al. Shape and appearance context modeling [C]// IEEE 11th International Conference on Computer Vision . Rio de Janeiro: IEEE, 2007: 1-8.
|
21 |
HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 1526-1535.
|
22 |
LI W, ZHAO R, XIAO T, et al. Deepreid: deep filter pairing neural network for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 152-159.
|
23 |
LI W, ZHU X, GONG S. Person re-identification by deep joint learning of multi-loss classification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: IJCAI Press, 2017: 2194-2200. LI W, ZHU X, GONG S. Person re-identification by deep joint learning of multi-loss classification [C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence . Melbourne: IJCAI Press, 2017: 2194-2200.
|
24 |
ZHANG X, LUO H, FAN X, et al. AlignedReID: surpassing human-level performance in person re-identification [EB/OL]. (2018-01-31)[2024-07-06]. https://arxiv.org/pdf/1711.08184.
|
25 |
LI W, ZHU X, GONG S. Harmonious attention network for person re-identification [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 2285-2294.
|
26 |
SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 480-496.
|
27 |
WANG C, ZHANG Q, HUANG C, et al. Mancs: a multi-task attentional network with curriculum sampling for person re-identification [C]// Proceedings of the European Conference on Computer Vision . Munich: Springer, 2018: 365-381.
|
28 |
ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3702-3712.
|
29 |
QUAN R, DONG X, WU Y, et al. Auto-reid: searching for a part-aware convnet for person re-identification [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 3750-3759.
|
30 |
WANG G, YANG S, LIU H, et al. High-order information matters: learning relation and topology for occluded person re-identification [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 6449-6458.
|
31 |
TAN H, LIU X, BIAN Y, et al Incomplete descriptor mining with elastic loss for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32 (1): 160- 171
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|