计算机技术、信息工程 |
|
|
|
|
基于光流重投影的高性能轻量级帧外插技术 |
覃浩宇( ),过洁*( ),张浩南,冯泽森,浦亮,张嘉伟,郭延文 |
南京大学 计算机科学与技术系,江苏 南京 210033 |
|
High-performance lightweight frame extrapolation technique based on optical flow reprojection |
Haoyu QIN( ),Jie GUO*( ),Haonan ZHANG,Zesen FENG,Liang PU,Jiawei ZHANG,Yanwen GUO |
Department of Computer Science and Technology, Nanjing University, Nanjing 210033, China |
引用本文:
覃浩宇,过洁,张浩南,冯泽森,浦亮,张嘉伟,郭延文. 基于光流重投影的高性能轻量级帧外插技术[J]. 浙江大学学报(工学版), 2025, 59(5): 902-911.
Haoyu QIN,Jie GUO,Haonan ZHANG,Zesen FENG,Liang PU,Jiawei ZHANG,Yanwen GUO. High-performance lightweight frame extrapolation technique based on optical flow reprojection. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 902-911.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.003
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/902
|
1 |
SANDY M, ANDERSSON J, BARRÉ-BRISEBOIS C. Directx: evolving microsoft’s graphics platform [C]// Game Developers Conference . San Francisco: IEEE, 2018.
|
2 |
BURGESS J RTX on the NVIDIA Turing GPU[J]. IEEE Micro, 2020, 40 (2): 36- 44
doi: 10.1109/MM.2020.2971677
|
3 |
HARADA T. Hardware-accelerated ray tracing in AMD Radeon ProRender 2.0 [EB/OL]. [2024-06-20]. https://gpuopen.com/learn/radeon-prorender-2-0/.
|
4 |
GUO J, FU X, LIN L, et al. ExtraNet: real-time extrapolated rendering for low-latency temporal supersampling [J]. ACM Transactions on Graphics , 2021, 40(6): 1-16.
|
5 |
BAO W, LAI W S, MA C, et al. Depth-aware video frame interpolation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Angeles: IEEE, 2019.
|
6 |
LEE H, KIM T, CHUNG T Y, et al. AdaCoF: adaptive collaboration of flows for video frame interpolation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020.
|
7 |
NIKLAUS S, MAI L, LIU F. Video frame interpolation via adaptive convolution [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Hawaii: IEEE, 2017.
|
8 |
OCULUS V. Asynchronous spacewarp [EB/OL]. [2024-06-20]. https://developers.meta.com/horizon/blog/asynchronous-spacewarp/.
|
9 |
MEYER S, WANG O, ZIMMER H, et al. Phase-based frame interpolation for video [C]// IEEE Conference on Computer Vision and Pattern Recognition .Washington DC: IEEE, 2015: 1410-1418.
|
10 |
MEYER S, DJELOUAH A, MCWILLIAMS B, et al. PhaseNet for video frame interpolation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018: 498-507.
|
11 |
JIANG H, SUN D, JAMPANI V, et al. Super SloMo: high quality estimation of multiple intermediate frames for video interpolation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018.
|
12 |
LONG G, KNEIP L, ALVAREZ J M, et al. Learning image matching by simply watching video [C]//LEIBE B, MATAS J, SEBE N, et al. European Conference on Computer Vision . Cham: Springer, 2016: 434-450.
|
13 |
CHOI M, KIM H, HAN B, et al. Channel attention is all you need for video frame interpolation [C]// AAAI Conference on Artificial Intelligence . New York: AAAI, 2020.
|
14 |
KALLURI T, PATHAK D, CHANDRAKER M, et al. FLAVR: flow-agnostic video representations for fast frame interpolation [C]// IEEE Workshop/Winter Conference on Applications of Computer Vision . [S. l.]: IEEE, 2020.
|
15 |
LU L, WU R, LIN H, et al. Video frame interpolation with Transformer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 3532-3542.
|
16 |
REDA F, KONTKANEN J, TABELLION E, et al. FILM: frame interpolation for large motion [C]// European Conference on Computer Vision . Tel Aviv: Springer, 2022.
|
17 |
DIDYK P, EISEMANN E, RITSCHEL T, et al Perceptually-motivated real-time temporal upsampling of 3D content for high-refresh-rate displays[J]. Computer Graphics Forum, 2010, 29 (2): 713- 722
doi: 10.1111/j.1467-8659.2009.01641.x
|
18 |
DIDYK P, RITSCHEL T, EISEMANN E, et al. Adaptive image-space stereo view synthesis [C]// Proceedings of Vision, Modeling, and Visualization Workshop 2010 . Siegen: [s. n.], 2010.
|
19 |
YANG L, TSE Y C, SANDER P V, et al. Image-based bidirectional scene reprojection [C]// Proceedings of the 2011 SIGGRAPH Asia Conference . Hongkong: ACM, 2011: 1-10.
|
20 |
BOWLES H, MITCHELL K, SUMNER R, et al. Iterative image warping [C]// Computer Graphics Forum. Oxford: Blackwell Publishing Ltd, 2012: 237-246.
|
21 |
NTAVELIS E, ROMERO A, BIGDELI S, et al. AIM 2020 challenge on image extreme inpainting [EB/OL]. [2024-06-20]. http://arxiv.org/abs/2010.01110.
|
22 |
PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1604.07379.
|
23 |
ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1904.07475.
|
24 |
LIU G, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1804.07723.
|
25 |
YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1806.03589.
|
26 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1511.07122.
|
27 |
REN Y, YU X, ZHANG R, et al. StructureFlow: image inpainting via structure-aware appearance flow [EB/OL]. [2024-06-20]. https://arxiv.org/abs/1908.03852.
|
28 |
LIU H, WANG Y, WANG M, et al. Delving globally into texture and structure for image inpainting [C]// Proceedings of the 30th ACM International Conference on Multimedia . [S. l. ]: ACM, 2022.
|
29 |
PIRNAY J, CHAI K. Inpainting Transformer for anomaly detection [EB/OL]. [2024-06-20]. https://arxiv.org/abs/2104.13897.
|
30 |
LUGMAYR A, DANELLJAN M, ROMERO A, et al. RePaint: inpainting using denoising diffusion probabilistic models [EB/OL]. [2024-06-20]. https://arxiv.org/abs/2201.09865.
|
31 |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [[EB/OL]. [2024-06-20]. https://arxiv.org/abs/2006.11239.
|
32 |
GUO J, LAI S, TAO C, et al. Highlight-aware two-stream network for single image SVBRDF acquisition [J]. ACM Transactions on Graphics , 2021, 40(4): 1-14.
|
33 |
ZENG Z, LIU S, YANG J, et al Temporally reliable motion vectors for real-time ray tracing[J]. Computer Graphics Forum, 2021, 40 (2): 79- 90
doi: 10.1111/cgf.142616
|
34 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Los Alamitos: IEEE, 2018: 7132-7141.
|
35 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library [C]//WALLACH H M, LAROCHELLE H, BEYGELZIMER A, et al. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: MIT Press, 2019: 8024-8035.
|
36 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [C]// BENGIO Y, LECUN Y. 3rd International Conference on Learning Representations. San Diego: MIT Press, 2015.
|
37 |
SCHIED C, KAPLANYAN A, WYMAN C, et al. Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination [C]// Proceedings of High Performance Graphics .[S. l.]: ACM, 2017 .
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|