计算机技术 |
|
|
|
|
基于改进YOLOv7-tiny的铝型材表面缺陷检测方法 |
王浚银1,2( ),文斌1,2,*( ),沈艳军1,张俊1,王子豪1 |
1. 三峡大学 电气与新能源学院,湖北 宜昌 443002 2. 湖北省输电线路工程技术研究中心,湖北 宜昌 443002 |
|
Surface defect detection method for aluminum profiles based on improved YOLOv7-tiny |
Junyin WANG1,2( ),Bin WEN1,2,*( ),Yanjun SHEN1,Jun ZHANG1,Zihao WANG1 |
1. School of Electrical and New Energy, China Three Gorges University, Yichang 443002, China 2. Hubei Provincial Engineering Technology Research Center for Power Transmission Line, Yichang 443002, China |
引用本文:
王浚银,文斌,沈艳军,张俊,王子豪. 基于改进YOLOv7-tiny的铝型材表面缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(3): 523-534.
Junyin WANG,Bin WEN,Yanjun SHEN,Jun ZHANG,Zihao WANG. Surface defect detection method for aluminum profiles based on improved YOLOv7-tiny. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 523-534.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.010
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/523
|
1 |
邓运来, 张新明 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29 (9): 2115- 2141 DENG Yunlai, ZHANG Xinming Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29 (9): 2115- 2141
|
2 |
杨传礼, 张修庆 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36 (16): 226- 234 YANG Chuanli, ZHANG Xiuqing Survey of applications of material defect detection based on machine vision and deep learning[J]. Materials Reports, 2022, 36 (16): 226- 234
doi: 10.11896/cldb.20070136
|
3 |
侯占林, 赵京 基于机器视觉的零件外形缺陷检测[J]. 组合机床与自动化加工技术, 2019, (11): 100- 104 HOU Zhanlin, ZHAO Jing Research on part contour defect detection algorithm based on machine vision[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2019, (11): 100- 104
|
4 |
郑彬, 王鑫 基于机器视觉的型材表面缺陷图像处理[J]. 机械设计, 2020, 37 (Suppl.1): 95- 97 ZHENG Bin, WANG Xin Research on image processing of section steel surface defect based on machine vision[J]. Journal of Machine Design, 2020, 37 (Suppl.1): 95- 97
|
5 |
赵文宏, 周神特, 吕建标, 等. 基于机器视觉的铝型材表面瑕疵检测方法[J]. 浙江工业大学学报, 2021, 49(1): 76–81. ZHAO Wenhong, ZHOU Shente, LV Jianbiao, et al. Method for detecting surface defects of aluminum profile based on machine vision [J]. Journal of Zhejiang University of Technology . 2021, 49(1): 76–81.
|
6 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition . Columbus: IEEE, 2014: 580–587.
|
7 |
GIRSHICK R. Fast R-CNN [C]// IEEE International Conference on Computer Vision . Santiago: IEEE, 2015: 1440–1448.
|
8 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
9 |
黄凤荣, 李杨, 郭兰申, 等 基于Faster R-CNN的零件表面缺陷检测算法[J]. 计算机辅助设计与图形学学报, 2020, 32 (6): 883- 893 HUANG Fengrong, LI Yang, GUO Lanshen, et al Method for detecting surface defects of engine parts based on Faster R-CNN[J]. Journal of Computer-aided Design and Computer Graphics, 2020, 32 (6): 883- 893
|
10 |
向宽, 李松松, 栾明慧, 等 基于改进Faster RCNN的铝材表面缺陷检测方法[J]. 仪器仪表学报, 2021, 42 (1): 191- 198 XIANG Kuan, LI Songsong, LUAN Minghui, et al Aluminum product surface defect detection method based on improved Faster RCNN[J]. Chinese Journal of Scientific Instrument, 2021, 42 (1): 191- 198
|
11 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 779–788.
|
12 |
SUN L S , WEI J X , DU H C , et al. MSFF: a multi-Scale feature fusion network for surface defect detection of aluminum profiles [J]. IEICE Transactions on Information and Systems , 2022, 105(9): 1652–1655.
|
13 |
杨畅畅, 李慧玲, 潘广通, 等 基于改进YOLOv4算法的铝型材表面缺陷检测[J]. 组合机床与自动化加工技术, 2022, (11): 66- 69 YANG Changchang, LI Huiling, PAN Guangtong, et al Surface defect detection of aluminum profiles based on improved YOLOv4 Algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2022, (11): 66- 69
|
14 |
张建国, 高飞, 莘明星, 等 基于改进YOLOv5s的铝型材表面弱缺陷识别方法[J]. 船舶工程, 2023, 45 (6): 161- 166 ZHANG Jianguo, GAO Fei, XIN Mingxing, et al Weak defect identification method on profile surface based on image enhancement and YOLOv5s[J]. Ship Engineering, 2023, 45 (6): 161- 166
|
15 |
曹义亲, 周一纬, 徐露 基于E-YOLOX的实时金属表面缺陷检测算法[J]. 图学学报, 2023, 44 (4): 677- 690 CAO Yiqin, ZHOU Yiwei, XU Lu, et al A real-time metallic surface defect detection algorithm based on E-YOLOX[J]. Journal of Graphics, 2023, 44 (4): 677- 690
|
16 |
LV Z, LI Y, QIAN S Real-time and accurate defect segmentation of aluminum strip surface via a lightweight network[J]. Journal of Real-Time Image Processing, 2023, 20 (2): 37
|
17 |
KANG X J, LI J F AYOLOv7-tiny: towards efficient defect detection in solid color circular weft fabric[J]. Textile Research Journal, 2024, 94 (1/2): 225- 245
doi: 10.1177/00405175231205898
|
18 |
KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE , 2022: 766–776.
|
19 |
MA N N, ZHANG X Y, SUN J. Funnel activation for visual recognition [C]// Computer Vision-ECCV 2020: 16th European Conference . Glasgow: Springer, 2020: 351–368.
|
20 |
NING T L, PAN S, ZHOU J. YOLOv7-SIMAM: an effective method for SAR ship detection [C]// 4th International Conference on Neural Networks, Information and Communication . Guangzhou: IEEE, 2024: 754–758.
|
21 |
CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 12021–12031.
|
22 |
WANG J W, XU C, YANG W, et al. A normalized gaussian wasserstein distance for tiny object detection [EB/OL]. (2021−10−26) [2024−01−01]. https://arxiv.org/abs/2110.13389.
|
23 |
沈晓海, 栗泽昊, 李敏, 等 基于多任务深度学习的铝材表面缺陷检测[J]. 激光与光电子学进展, 2020, 57 (10): 10 SHEN Xiaohai, LI Zehao, LI Min, et al Aluminum surface-defect detection based on multi-Task deep learning[J]. Laser and Optoelectronics Progress, 2020, 57 (10): 10
|
24 |
邓丁山, 王昊楠, 赵军杰, 等. 基于改进YOLOv7的风力发电机表面缺陷检测算法[EB/OL]. [2024−01−01]. https://doi.org/10.13196/j.cims.2023.0410.
|
25 |
陈乐, 周永霞, 祖佳贞 改进YOLOX-S的偏光片表面缺陷检测算法[J]. 计算机工程与应用, 2024, 60 (2): 295- 303 CHEN Le, ZHOU Yongxia, ZU Jianzhen Surface defect detection of polarizer based on improved YOLOX-S algorithm[J]. Computer Engineering and Applications, 2024, 60 (2): 295- 303
doi: 10.3778/j.issn.1002-8331.2209-0375
|
26 |
齐向明, 柴蕊, 高一萌, 等 重构SPPCSPC与优化下采样的小目标检测算法[J]. 计算机工程与应用, 2023, 59 (20): 158- 166 QI Xiangming, CHAI Rui, GAO Yimeng, et al Algorithm of reconstructed SPPCSPC and optimized downsampling for small object detection[J]. Computer Engineering and Applications, 2023, 59 (20): 158- 166
doi: 10.3778/j.issn.1002-8331.2305-0004
|
27 |
SELVARAJU R R, COGSWELL M, DAS A, et al Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128 (2): 336- 359
doi: 10.1007/s11263-019-01228-7
|
28 |
席凌飞, 伊力哈木·亚尔买买提, 刘雅洁, 等 基于改进YOLOv5的铝型材表面缺陷检测方法[J]. 广西师范大学学报: 自然科学版, 2024, 42 (1): 111- 119 XI Lingfei, YAERMAIMAITI Yilihamu, LIU Yajie et al. Surface defect detection method for aluminum profile based on improved YOLOv5[J]. Journal of Guangxi Normal University: Natural Science Edition, 2024, 42 (1): 111- 119
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|