Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 597-605    DOI: 10.3785/j.issn.1008-973X.2025.03.017
机械工程     
基于邻域拓扑重建的人体工学产品定制设计方法
高铭宇(),徐敬华*(),张树有,王康,谭建荣
浙江大学 设计工程研究所,浙江 杭州 310058
Custom design method of ergonomic products based on neighborhood topology reconstruction
Mingyu GAO(),Jinghua XU*(),Shuyou ZHANG,Kang WANG,Jianrong TAN
Design Engineering Institute, Zhejiang University, Hangzhou 310058, China
 全文: PDF(3832 KB)   HTML
摘要:

为了提高人体工学产品的设计效率和舒适度,提出基于邻域拓扑重建(NTR)的人体工学产品定制设计方法. 通过结合医学图像邻域拓扑关系进行三维重建,克服传统移动立方体算法的二义性问题,同时避免移动四面体的高耗时问题. 基于医学CT图像进行三维重建,得到具有个性化定制信息的复杂曲面构件原始形状,为人体工学产品定制设计提供数据支持. 引入深度残差网络,利用神经网络分层提取模型层切面的多尺度特征,分层建立增材制造成本消耗与多尺度特征之间的非线性隐式关系,实现复杂概念设计原型的材料消耗预测与成本优化. 根据流形原始形状和基于Laplace-Gauss曲线的变形算法获取手部按握姿态,根据姿态对普通鼠标进行方案演化,对人体工学鼠标进行概念设计. 通过物理实验观察到的微观形貌表征了原型产品的高精度特征,预测能耗变化与实际能耗相近. 实验结果证明,邻域拓扑重建和变形算法相结合可以为人体工学产品定制设计提供数据支持和实物参考,提高人体工学产品的舒适度.

关键词: 邻域拓扑重建人体工学产品定制设计深度残差网络分层增材制造变形算法    
Abstract:

A custom design method of ergonomic products based on neighborhood topology reconstruction (NTR) was proposed to improve the design efficiency and comfort level of ergonomic products. The 3D reconstruction method was based on the neighborhood topological relation of medical images, the ambiguity of Marching Cubes algorithm was overcame, and the time-consuming problem of Marching Tetrahedrons algorithm was avoided. The original shape of complex curved surface component with personalized customization information was obtained by 3D reconstruction based on medical CT images, which provided data support for the custom design of ergonomic products. A deep residual network was introduced, and the multi-scale features of the layer cross-section were extracted layer by layer by using the neural network. The nonlinear implicit relationship between cost consumption of additive manufacture and multi-scale features was established layer by layer. The materials consumption prediction and cost optimization of the complex conceptual design prototype were realized. According to the original shape of the manifold and deformation algorithm based on the Laplace-Gauss curve, the hand pressing-holding posture was obtained. The scheme of ordinary mouse was evolved according to the posture, and the ergonomic mouse was designed conceptually. The effectiveness of the method was verified by physical experiments. The high surface precision of the prototype product was indicated by the microscopic morphology, and the predicted energy consumption change was similar to the actual energy consumption. The experimental results show that the combination of neighborhood topology reconstruction and deformation algorithm can provide data support and physical reference for the custom design of ergonomic products and improve the comfort level of ergonomic products.

Key words: neighborhood topology reconstruction    ergonomic product    custom design    deep residual network    stratified additive manufacture    deformation algorithm
收稿日期: 2024-04-29 出版日期: 2025-03-10
CLC:  TP 391.7  
基金资助: 国家重点研发计划资助项目(2022YFB3303303);浙江大学IDEA2022 创新设计资助项目(188170-11102).
通讯作者: 徐敬华     E-mail: 3140104348@zju.edu.cn;xujh@zju.edu.cn
作者简介: 高铭宇(1996—),男,博士生,从事增材制造研究. orcid.org/0000-0001-9377-9292. E-mail:3140104348@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
高铭宇
徐敬华
张树有
王康
谭建荣

引用本文:

高铭宇,徐敬华,张树有,王康,谭建荣. 基于邻域拓扑重建的人体工学产品定制设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 597-605.

Mingyu GAO,Jinghua XU,Shuyou ZHANG,Kang WANG,Jianrong TAN. Custom design method of ergonomic products based on neighborhood topology reconstruction. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 597-605.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.017        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/597

图 1  存在二义性问题的邻域正方体
图 2  存在二义性问题的邻域正方体的划分方式
图 3  过渡算法示意图
图 4  基于邻域拓扑的医学图像三维重建方法流程图
图 5  基于邻域拓扑重建的模型及部分原始图像
图 6  不同复杂曲面鼠标模型
图 7  不同鼠标构件握持姿势
图 8  五指机械手
图 9  各指尖运动数据
图 10  DLP打印模型
图 11  鼠标握持压力测试实验
图 12  人体工学鼠标4个区域的表面微观形貌
图 13  打印过程材料消耗的预测值和实测值
性能指标现有方法本研究方法(NTR方法)
三维重建Lorensen等[12]的移动立方体算法存在二义性问题;
Gueziec等[13]的移动四面体算法重建速度较慢
●在避免二义性问题的基础上,减少医学图像三维重建所需时间,提高三维
重建的效率,如图35所示
三维流形变形Louren?o等[4]通过手动测量尺寸以及人工建模获得
手部模型
●通过三维重建与流形变形方法相结合获得准确人体尺寸数据,如图7所示
●提出柔性抓取空间,使用斜椭球作为凸壳
人体工学评价Harih等[3]仅考虑了静态抓握状态●既考虑了静态握持状态的舒适度,又考虑了动态按握过程的平稳性,
图7~ 9所示
快速原型制造Louren?o等[4]仅展示概念模型●通过DLP设备进行了快速原型制造,通过微观形貌表征原型产品的
高表面精度,如图1012所示
表 1  本研究方法与其他方法的对比
1 LINDEGÅRD A, GRIMBY-EKMAN A, WAHLSTRÖM J, et al Can biofeedback training in combination with ergonomic information reduce pain among young adult computer users with neck and upper extremity symptoms? A randomized controlled intervention study[J]. Applied Ergonomics, 2024, 114: 104155
doi: 10.1016/j.apergo.2023.104155
2 BLEECKER M L, CELIO M A, BARNES S K A medical-ergonomic program for symptomatic keyboard/mouse users[J]. Journal of Occupational and Environmental Medicine, 2011, 53 (5): 562- 568
doi: 10.1097/JOM.0b013e31821719af
3 HARIH G, KALC M, VOGRIN M, et al Finite element human hand model: validation and ergonomic considerations[J]. International Journal of Industrial Ergonomics, 2021, 85: 103186
doi: 10.1016/j.ergon.2021.103186
4 LOURENÇO M L, PITARMA R A, COELHO D A A design contribution to ergonomic pc mice development[J]. International Journal of Environmental Research and Public Health, 2022, 19 (13): 8126
doi: 10.3390/ijerph19138126
5 LI N, JIANG L, YANG D, et al. Development of an anthropomorphic prosthetic hand for man-machine interaction [C]// Intelligent Robotics and Applications . Shanghai: ICIRA, 2010: 38–46.
6 MEATTINI R, BENATTI S, SCARCIA U, et al An semg-based human–robot interface for robotic hands using machine learning and synergies[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8 (7): 1149- 1158
doi: 10.1109/TCPMT.2018.2799987
7 CAROPRESE M, ALBENZIO M, MARINO R, et al Behavior, milk yield, and milk composition of machine-and hand-milked Murgese mares[J]. Journal of Dairy Science, 2007, 90 (6): 2773- 2777
doi: 10.3168/jds.2006-603
8 ZHANG X, ZHANG T, JIANG Y, et al A novel brain-controlled prosthetic hand method integrating AR-SSVEP augmentation, asynchronous control, and machine vision assistance[J]. Heliyon, 2024, 10 (5): e26521
doi: 10.1016/j.heliyon.2024.e26521
9 TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al Continuous liquid interface production of 3D objects[J]. Science, 2015, 347 (6228): 1349- 1352
doi: 10.1126/science.aaa2397
10 GUO J, ZHANG X, YAN J, et al Digital light processing bio-scaffolds of hydroxyapatite ceramic foams with multi-level pores using Pickering emulsions as the feedstock[J]. Journal of the European Ceramic Society, 2024, 44 (6): 4272- 4284
doi: 10.1016/j.jeurceramsoc.2024.01.021
11 PAREDES C, ROLEČEK J, MIRANDA P Improving the strength of β-TCP scaffolds produced by digital light processing using two-step sintering[J]. Journal of the European Ceramic Society, 2024, 44 (4): 2571- 2580
doi: 10.1016/j.jeurceramsoc.2023.11.028
12 LORENSEN W E, CLINE H E. Marching cubes: a high resolution 3D surface construction algorithm [C]// Proceedings of the 14th annual conference on Computer graphics and interactive techniques . New York: ACM, 1987: 163–169.
13 GUEZIEC A, HUMMEL R Exploiting triangulated surface extraction using tetrahedral decomposition[J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1 (4): 328- 342
doi: 10.1109/2945.485620
14 KIM S, SOHN D, IM S Construction of polyhedral finite element meshes based upon marching cube algorithm[J]. Advances in Engineering Software, 2019, 128: 98- 112
doi: 10.1016/j.advengsoft.2018.11.014
15 CHANG M, OH J W, CHANG D S, et al Interactive marching cubes algorithm for intraoral scanners[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89 (5/8): 2053- 2062
doi: 10.1007/s00170-016-9231-y
16 SINGH R, DIGUMARTHY S R, MUSE V V, et al Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT[J]. American Journal of Roentgenology, 2020, 214 (3): 566- 573
doi: 10.2214/AJR.19.21809
17 JIN Z, ZHANG Z, GU G X Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning[J]. Manufacturing Letters, 2019, 22: 11- 15
doi: 10.1016/j.mfglet.2019.09.005
18 HE H, YANG Y, PAN Y Machine learning for continuous liquid interface production: Printing speed modelling[J]. Journal of Manufacturing Systems, 2019, 50: 236- 246
doi: 10.1016/j.jmsy.2019.01.004
19 XIONG J, ZHANG G Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision[J]. Measurement Science and Technology, 2013, 24 (11): 115103
doi: 10.1088/0957-0233/24/11/115103
20 TENG C, ASHBY K, PHAN N, et al The effects of material property assumptions on predicted meltpool shape for laser powder bed fusion based additive manufacturing[J]. Measurement Science and Technology, 2016, 27 (8): 085602
doi: 10.1088/0957-0233/27/8/085602
21 PAUL R, ANAND S, GERNER F Effect of thermal deformation on part errors in metal powder based additive manufacturing processes[J]. Journal of Manufacturing Science and Engineering, 2014, 136 (3): 031009
doi: 10.1115/1.4026524
22 谭建荣, 高铭宇, 徐敬华, 等 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59 (19): 111- 125
TAN Jianrong, GAO Mingyu, XU Jinghua, et al Digital intelligent forward design method and its application in manufacturing equipment and process[J]. Journal of Mechanical Engineering, 2023, 59 (19): 111- 125
doi: 10.3901/JME.2023.19.111
23 XU J, GAO M, ZHAN J, et al Towards support-free design for 3D printing of thin-walled composite based on stratified manufacturability reinforcement[J]. CIRP Journal of Manufacturing Science and Technology, 2022, 38: 457- 472
doi: 10.1016/j.cirpj.2022.05.017
24 XU J, WANG K, SHENG H, et al Energy efficiency optimization for ecological 3D printing based on adaptive multi-layer customization[J]. Journal of Cleaner Production, 2020, 245: 118826
doi: 10.1016/j.jclepro.2019.118826
25 XU J, GAO M, FENG X, et al Support diminution design for layered manufacturing of manifold surface based on variable orientation tracking[J]. 3D Printing and Additive Manufacturing, 2021, 8 (3): 149- 167
doi: 10.1089/3dp.2020.0203
[1] 陈健,莫蓉,初建杰,陈登凯,宫静. 云设计制造模式下的社交化协作团队构建方法[J]. 浙江大学学报(工学版), 2019, 53(3): 444-454.
[2] 何雪军, 王进, 陆国栋, 刘振宇, 陈立, 金晶. 基于三角网切片及碰撞检测的工业机器人三维头像雕刻[J]. 浙江大学学报(工学版), 2017, 51(6): 1104-1110.
[3] 何雪军,王进,陆国栋,陈立. 岛中含湖型截面的环切刀轨连接方法[J]. 浙江大学学报(工学版), 2016, 50(9): 1654-1661.
[4] 吴尧锋,王文,卢科青,魏燕定,陈子辰. 边界聚类椭圆快速检测方法[J]. 浙江大学学报(工学版), 2016, 50(3): 405-411.
[5] 沈铭瑜, 裘乐淼, 谭建荣, 伍晓榕. 性能需求驱动的产品细分结构主动推送设计[J]. 浙江大学学报(工学版), 2015, 49(2): 287-295.
[6] 王诗言, 于慧敏. 运动场景下的时空域跟踪模型及原始-对偶算法[J]. J4, 2013, 47(4): 630-637.
[7] 沈晔, 李敏丹, 夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[8] 沈晔 ,李敏丹,夏顺仁. 计算机辅助乳腺癌诊断中的非平衡学习技术[J]. J4, 2013, 47(1): 1-7.
[9] 孙良峰, 张树有, 裘乐淼, 胡琨. 产品模块可再生模型与再生技术[J]. J4, 2012, 46(10): 1744-1756.
[10] 周懿, 钟崴, 谢金芳, 童水光. 过程型机械系统的方案设计模型[J]. J4, 2012, 46(8): 1526-1533.
[11] 赵杰伊,唐敏,童若锋. 基于CUDA的细分曲面阴影体算法[J]. J4, 2012, 46(7): 1301-1306.
[12] 刘晓健, 张树有, 张建新, 张金美. 产品设计更改在弱连接结构上的传播[J]. J4, 2012, 46(6): 1041-1047.
[13] 徐进, 张树有, 费少梅. 基于自适应粒子群的产品再制造拆卸规划[J]. J4, 2011, 45(10): 1746-1752.
[14] 沈莞蔷,汪国昭. 一类新的广义Ball基及其相应曲线[J]. J4, 2011, 45(3): 435-439.
[15] 刘晓健,张树有,徐敬华. 基于网络流Petri网模型的设计更改技术[J]. J4, 2011, 45(1): 37-44.