机械工程 |
|
|
|
|
盾构智能管片拼装机的平移运动电液系统精确控制 |
陈旭阳1( ),黄鑫1,郭俊可2,林福龙2,贾连辉2,龚国芳1,杨华勇1,祝毅1,*( ) |
1. 浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027 2. 中铁工程装备集团有限公司 电气与智能技术研究院,河南 郑州 450047 |
|
Precise control of translational motion electro-hydraulic system of intelligent shield segment assembly machine |
Xuyang CHEN1( ),Xin HUANG1,Junke GUO2,Fulong LIN2,Lianhui JIA2,Guofang GONG1,Huayong YANG1,Yi ZHU1,*( ) |
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China 2. Electrical and Intelligent Technology Research Institute, China Railway Engineering Equipment Group Co. Ltd, Zhengzhou 450047, China |
引用本文:
陈旭阳,黄鑫,郭俊可,林福龙,贾连辉,龚国芳,杨华勇,祝毅. 盾构智能管片拼装机的平移运动电液系统精确控制[J]. 浙江大学学报(工学版), 2025, 59(3): 588-596.
Xuyang CHEN,Xin HUANG,Junke GUO,Fulong LIN,Lianhui JIA,Guofang GONG,Huayong YANG,Yi ZHU. Precise control of translational motion electro-hydraulic system of intelligent shield segment assembly machine. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 588-596.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.016
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I3/588
|
1 |
CHEN X, WANG L, CAI J, et al. Autonomous recognition and positioning of shield segments based on red, green, blue and depth information[J]. Automation in Construction , 2023, 146.
|
2 |
王林涛. 盾构掘进姿态控制关键技术研究[D]. 浙江大学, 2014. WANG Lintao. Research on key technologies for attitude control of shield tunneling machine [D]. Hangzhou: Zhejiang University, 2014.
|
3 |
LU J Y, GU C F, ZHAO Y J, et al Refined modeling method and analysis of an electromagnetic direct-drive hydrostatic actuation system[J]. Actuators, 2022, 11 (10): 281
|
4 |
SHI B F, XIONG L, YU Z P Master cylinder pressure estimation of the electro-hydraulic brake system based on modeling and fusion of the friction character and the pressure-position character[J]. IEEE Transactions on Vehicular Technology, 2023, 72 (2): 1748- 1762
doi: 10.1109/TVT.2022.3213599
|
5 |
DAGDELEN M, SARIGEC, ILI M I Automation of friction torque identification for vane-type semi-rotary pneumatic actuators[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45 (6): 340
|
6 |
ZHANG Y M, LI K M, CAI M L, et al Establishment and experimental verification of a nonlinear position servo system model for a magnetically coupled rodless cylinder[J]. Actuators, 2022, 11 (2): 50
|
7 |
FENG H, QIAO W H, YIN C B, et al Identification and compensation of non-linear friction for a electro-hydraulic system[J]. Mechanism and Machine Theory, 2019, 141: 1- 13
doi: 10.1016/j.mechmachtheory.2019.07.004
|
8 |
JI Y, ZHANG J Z, HE C K, et al Constraint performance pressure tracking control with asymmetric continuous friction compensation for booster based brake-by-wire system[J]. Mechanical Systems and Signal Processing, 2022, 174: 109083
|
9 |
JIANG S L, ZHANG K, WANG H, et al Research on adaptive friction compensation of digital hydraulic cylinder based on LuGre friction model[J]. Shock and Vibration, 2021, 1 (1): 8854424
|
10 |
SARKAR A, MAJI K, CHAUDHURI S, et al Actuation of an electrohydraulic manipulator with a novel feedforward compensation scheme and PID feedback in servo-proportional valves[J]. Control Engineering Practice, 2023, 135: 105490
|
11 |
IDIR A, BENSAFIA Y, KHETTAB K, et al Performance improvement of aircraft pitch angle control using a new reduced order fractionalized PID controller[J]. Asian Journal of Control, 2023, 25 (4): 2588- 2603
doi: 10.1002/asjc.3009
|
12 |
DO T C, TRAN D T, AHN K K. Fractional order fuzzy PID controller for an electro-hydraulic rotary actuator [C]// Proceedings of the 23rd International Conference on Mechatronics Technology . Salerno: IEEE, 2019: 23−26.
|
13 |
CAN Ö, ANDIC C, EKINCI S, et al Enhancing transient response performance of automatic voltage regulator system by using a novel control design strategy[J]. Electrical Engineering, 2023, 105 (4): 1993- 2005
doi: 10.1007/s00202-023-01777-8
|
14 |
KUMAR A, ANWAR M N Decentralized load-frequency controller design for a single as well as multi-area power system[J]. Iranian Journal of Science and Technology: Transactions of Electrical Engineering, 2020, 44 (1): 309- 326
doi: 10.1007/s40998-019-00246-y
|
15 |
COSKUN M Y, ITIK M Intelligent PID control of an industrial electro-hydraulic system[J]. ISA Transactions, 2023, 139: 484- 498
doi: 10.1016/j.isatra.2023.04.005
|
16 |
BINGUL Z, GUL K Intelligent-PID with PD feedforward trajectory tracking control of an autonomous underwater vehicle[J]. Machines, 2023, 11 (2): 300
|
17 |
ÖNEN Ü Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state observer based chattering-free sliding mode control[J]. IEEE Access, 2023, 11: 2875- 2885
doi: 10.1109/ACCESS.2023.3234864
|
18 |
LIU T Research on stability of hydraulic system based on nonlinear PID control[J]. Nonlinear Engineering Modeling and Application, 2022, 11 (1): 494- 499
doi: 10.1515/nleng-2022-0222
|
19 |
ZHAO M C, WANG Q W, WANG Y W, et al Multi-motor cooperative control strategy for speed synchronous control of construction platform[J]. Electronics, 2022, 11 (24): 4162
|
20 |
ZENG X L, WANG W Q, WANG H Y Adaptive PI and RBFNN PID current decoupling controller for permanent magnet synchronous motor drives: hardware-validated results[J]. Energies, 2022, 15 (17): 6353
|
21 |
陈旭阳, 韩振南, 宁少慧 自适应改进双树复小波变换的齿轮箱故障诊断[J]. 振动, 测试与诊断, 2019, 39 (5): 1016- 1022 CHEN Xuyang, HAN Zhennan, NING Shaohui Gearbox fault diagnosis based on adaptive modified dual-tree complex wavelet transform[J]. Vibration, testing and diagnosis, 2019, 39 (5): 1016- 1022
|
22 |
陈旭阳, 韩振南, 王志坚 改进双树复小波变换和高阶累积量的齿轮箱信号降噪方法[J]. 太原理工大学学报, 2018, 49 (6): 813- 819 CHEN Xuyang, HAN Zhennan, WANG Zhijian Gearbox signal denoising method based on improved double tree complex wavelet transform and higher order cumulant[J]. Journal of Taiyuan University of Technology, 2018, 49 (6): 813- 819
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|