Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (3): 588-596    DOI: 10.3785/j.issn.1008-973X.2025.03.016
机械工程     
盾构智能管片拼装机的平移运动电液系统精确控制
陈旭阳1(),黄鑫1,郭俊可2,林福龙2,贾连辉2,龚国芳1,杨华勇1,祝毅1,*()
1. 浙江大学 流体动力基础件与机电系统全国重点实验室,浙江 杭州 310027
2. 中铁工程装备集团有限公司 电气与智能技术研究院,河南 郑州 450047
Precise control of translational motion electro-hydraulic system of intelligent shield segment assembly machine
Xuyang CHEN1(),Xin HUANG1,Junke GUO2,Fulong LIN2,Lianhui JIA2,Guofang GONG1,Huayong YANG1,Yi ZHU1,*()
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Electrical and Intelligent Technology Research Institute, China Railway Engineering Equipment Group Co. Ltd, Zhengzhou 450047, China
 全文: PDF(2244 KB)   HTML
摘要:

管片拼装机载荷大、滞后大、摩擦扰动大,为了提高管片自动拼装的精度和效率,通过对模型精确辨识和iPIDD2算法实现在摩擦扰动下液压平移系统的精确控制. 在理论模型基础上,提出多算法融合信号降噪方法对输出信号进行预处理,并采用带遗忘因子的偏差补偿递推最小二乘辨识算法,以获得更精确的液压系统模型. 针对摩擦扰动下拼装机平移运动的精确控制,提出iPIDD2控制算法实现平移油缸的精确控制. 通过AMESim-Simulink联合仿真和搭建电液伺服系统实验台及实时控制系统验证研究结果. 在不同的负载工况下进行全尺寸实验验证,结果表明,所提方法的位移跟踪稳态误差小于3 mm,与PID相比最大跟踪误差减小77.6%,迟滞时间减少超过10 s. 在参数不确定和摩擦扰动下具有更好的精确控制性能和更小的迟滞时间,所提算法对提高摩擦扰动下自动管片拼装的拼装精度和效率具有积极意义.

关键词: 盾构机管片拼装信号处理参数识别精确控制    
Abstract:

Aiming at the problem of heavy load, large hysteresis and large friction disturbance of segment assembly machine, the precise control of hydraulic translation systems under friction disturbances was addressed through accurate model identification and the implementation of the iPIDD2 algorithm, to improve the accuracy and efficiency of automatic segment assembly. Initially, a signal preprocessing method combining multiple algorithms for noise reduction was proposed based on the theoretical model to preprocess the output signal. Subsequently, a deviation-compensating recursive least squares identification algorithm with a forgetting factor was adopted to obtain a more accurate hydraulic system model. To achieve precise control of the translational motion of the assembly machine under friction disturbances, the iPIDD2 control algorithm was proposed to achieve precise control of the translation cylinder. The research results were validated through AMESim-Simulink co-simulation and the construction of an electro-hydraulic servo system experimental platform with real-time control systems. Full-scale experimental verification was conducted under different load conditions. Results showed that compared with PID, this method had better precise control performance and smaller hysteresis time under parameter uncertainty and friction disturbance. The displacement tracking of this method was stable. The state error was less than 3 mm, which was 77.6% smaller than the maximum tracking error of PID control, and the hysteresis time was reduced by more than 10 s. This method held significant potential for improving the assembly precision and efficiency of automatic shield segment assembly under friction disturbances.

Key words: shield machine    segment assembly    signal processing    parameter identification    precise control
收稿日期: 2024-01-01 出版日期: 2025-03-10
CLC:  TH 137  
基金资助: 国家自然科学基金优秀青年基金资助项目(52222503);浙江省自然科学基金重大资助项目(LD22E050003);国家重点研发计划资助项目(2022YFB4602502).
通讯作者: 祝毅     E-mail: 352206277@qq.com;yiz@zju.edu.cn
作者简介: 陈旭阳(1992—),男,博士生,从事智能制造与机器人研究. orcid.org/0009-0003-0450-3588. E-mail:352206277@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈旭阳
黄鑫
郭俊可
林福龙
贾连辉
龚国芳
杨华勇
祝毅

引用本文:

陈旭阳,黄鑫,郭俊可,林福龙,贾连辉,龚国芳,杨华勇,祝毅. 盾构智能管片拼装机的平移运动电液系统精确控制[J]. 浙江大学学报(工学版), 2025, 59(3): 588-596.

Xuyang CHEN,Xin HUANG,Junke GUO,Fulong LIN,Lianhui JIA,Guofang GONG,Huayong YANG,Yi ZHU. Precise control of translational motion electro-hydraulic system of intelligent shield segment assembly machine. Journal of ZheJiang University (Engineering Science), 2025, 59(3): 588-596.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.03.016        https://www.zjujournals.com/eng/CN/Y2025/V59/I3/588

图 1  管片拼装机结构图
图 2  平移机构电液系统原理图
图 3  信号预处理流程图
图 4  PIDD2控制算法示意图
图 5  iPID控制算法示意图
图 6  iPIDD2控制算法示意图
图 7  平移液压系统AMESim仿真模型
参数数值
活塞直径/mm80
杆直径/ mm50
油缸行程/ m2
负载/ kg11 000
黏性摩擦系数/ (N·m?1·s)3 000
库伦摩擦力/ N20 000
静摩擦力/ N22 000
表 1  平移系统仿真模型参数
图 8  本研究控制方法和PID控制方法的位移跟踪结果及跟踪误差
图 9  智能管片拼装机全尺寸实验台
参数数值参数数值
转动范围/(°)±220管片外径/m6
举升行程/m0.8~1.2轴向移动/(mm·s?1)80.0 (最大速度)
平移行程/m1.2~2.1旋转移动/(r·min?1)0~1.5
微调转角(αβγ)/(°)±2.5提升移动/(mm·s?1)13.3 (最大速度)
表 2  智能管片拼装机全尺寸实验台参数
传感器品牌型号主要参数
深度相机Intel Realsense D435iRGB 分辨率:1920×1080,深度测量精度:<2%
深度分辨率:1280×720,深度测量范围:0.1 ~10.0 m
控制器西门子 S7-300位内存:8192 bit,处理时间:< 0.01 us
磁致伸缩位移传感器北京特倍福测量范围:TH25 ~7 650 mm,精度:0.02%
拉线式位移传感器北京特倍福测量范围:0~1 000 mm,精度:±0.2%F.S.
编码器宜科最大转速:6000 r/s,精度:±0.0439°
表 3  实验台传感器及参数
图 10  平移油缸位移信号预处理
图 11  实验台平移液压系统不同方法的系统辨识结果
图 12  空载工况下本研究控制方法和PID控制方法的位移跟踪结果及跟踪误差
图 13  负载工况下本研究控制方法和PID控制方法的位移跟踪结果及跟踪误差
1 CHEN X, WANG L, CAI J, et al. Autonomous recognition and positioning of shield segments based on red, green, blue and depth information[J]. Automation in Construction , 2023, 146.
2 王林涛. 盾构掘进姿态控制关键技术研究[D]. 浙江大学, 2014.
WANG Lintao. Research on key technologies for attitude control of shield tunneling machine [D]. Hangzhou: Zhejiang University, 2014.
3 LU J Y, GU C F, ZHAO Y J, et al Refined modeling method and analysis of an electromagnetic direct-drive hydrostatic actuation system[J]. Actuators, 2022, 11 (10): 281
4 SHI B F, XIONG L, YU Z P Master cylinder pressure estimation of the electro-hydraulic brake system based on modeling and fusion of the friction character and the pressure-position character[J]. IEEE Transactions on Vehicular Technology, 2023, 72 (2): 1748- 1762
doi: 10.1109/TVT.2022.3213599
5 DAGDELEN M, SARIGEC, ILI M I Automation of friction torque identification for vane-type semi-rotary pneumatic actuators[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45 (6): 340
6 ZHANG Y M, LI K M, CAI M L, et al Establishment and experimental verification of a nonlinear position servo system model for a magnetically coupled rodless cylinder[J]. Actuators, 2022, 11 (2): 50
7 FENG H, QIAO W H, YIN C B, et al Identification and compensation of non-linear friction for a electro-hydraulic system[J]. Mechanism and Machine Theory, 2019, 141: 1- 13
doi: 10.1016/j.mechmachtheory.2019.07.004
8 JI Y, ZHANG J Z, HE C K, et al Constraint performance pressure tracking control with asymmetric continuous friction compensation for booster based brake-by-wire system[J]. Mechanical Systems and Signal Processing, 2022, 174: 109083
9 JIANG S L, ZHANG K, WANG H, et al Research on adaptive friction compensation of digital hydraulic cylinder based on LuGre friction model[J]. Shock and Vibration, 2021, 1 (1): 8854424
10 SARKAR A, MAJI K, CHAUDHURI S, et al Actuation of an electrohydraulic manipulator with a novel feedforward compensation scheme and PID feedback in servo-proportional valves[J]. Control Engineering Practice, 2023, 135: 105490
11 IDIR A, BENSAFIA Y, KHETTAB K, et al Performance improvement of aircraft pitch angle control using a new reduced order fractionalized PID controller[J]. Asian Journal of Control, 2023, 25 (4): 2588- 2603
doi: 10.1002/asjc.3009
12 DO T C, TRAN D T, AHN K K. Fractional order fuzzy PID controller for an electro-hydraulic rotary actuator [C]// Proceedings of the 23rd International Conference on Mechatronics Technology . Salerno: IEEE, 2019: 23−26.
13 CAN Ö, ANDIC C, EKINCI S, et al Enhancing transient response performance of automatic voltage regulator system by using a novel control design strategy[J]. Electrical Engineering, 2023, 105 (4): 1993- 2005
doi: 10.1007/s00202-023-01777-8
14 KUMAR A, ANWAR M N Decentralized load-frequency controller design for a single as well as multi-area power system[J]. Iranian Journal of Science and Technology: Transactions of Electrical Engineering, 2020, 44 (1): 309- 326
doi: 10.1007/s40998-019-00246-y
15 COSKUN M Y, ITIK M Intelligent PID control of an industrial electro-hydraulic system[J]. ISA Transactions, 2023, 139: 484- 498
doi: 10.1016/j.isatra.2023.04.005
16 BINGUL Z, GUL K Intelligent-PID with PD feedforward trajectory tracking control of an autonomous underwater vehicle[J]. Machines, 2023, 11 (2): 300
17 ÖNEN Ü Model-free controller design for nonlinear underactuated systems with uncertainties and disturbances by using extended state observer based chattering-free sliding mode control[J]. IEEE Access, 2023, 11: 2875- 2885
doi: 10.1109/ACCESS.2023.3234864
18 LIU T Research on stability of hydraulic system based on nonlinear PID control[J]. Nonlinear Engineering Modeling and Application, 2022, 11 (1): 494- 499
doi: 10.1515/nleng-2022-0222
19 ZHAO M C, WANG Q W, WANG Y W, et al Multi-motor cooperative control strategy for speed synchronous control of construction platform[J]. Electronics, 2022, 11 (24): 4162
20 ZENG X L, WANG W Q, WANG H Y Adaptive PI and RBFNN PID current decoupling controller for permanent magnet synchronous motor drives: hardware-validated results[J]. Energies, 2022, 15 (17): 6353
21 陈旭阳, 韩振南, 宁少慧 自适应改进双树复小波变换的齿轮箱故障诊断[J]. 振动, 测试与诊断, 2019, 39 (5): 1016- 1022
CHEN Xuyang, HAN Zhennan, NING Shaohui Gearbox fault diagnosis based on adaptive modified dual-tree complex wavelet transform[J]. Vibration, testing and diagnosis, 2019, 39 (5): 1016- 1022
22 陈旭阳, 韩振南, 王志坚 改进双树复小波变换和高阶累积量的齿轮箱信号降噪方法[J]. 太原理工大学学报, 2018, 49 (6): 813- 819
CHEN Xuyang, HAN Zhennan, WANG Zhijian Gearbox signal denoising method based on improved double tree complex wavelet transform and higher order cumulant[J]. Journal of Taiyuan University of Technology, 2018, 49 (6): 813- 819
[1] 谭婷芳,蔡万源,蒋俊正. 稀疏分解和图拉普拉斯正则化的图像前景背景分割方法[J]. 浙江大学学报(工学版), 2024, 58(5): 979-987.
[2] 李文娟,邓洪高,马谋,蒋俊正. 基于图信号处理的传染病传播预测方法[J]. 浙江大学学报(工学版), 2022, 56(5): 1017-1024.
[3] 雷驰,吴萌岭. 基于反步法的列车制动缸压力精确控制[J]. 浙江大学学报(工学版), 2021, 55(3): 462-471.
[4] 贾连辉,李太运. 超大直径盾构管片拼装机关键技术[J]. 浙江大学学报(工学版), 2020, 54(4): 816-823.
[5] 籍庆辉, 朱平, 卢家海. 层合板分层失效数值模拟与参数识别[J]. 浙江大学学报(工学版), 2017, 51(5): 954-960.
[6] 吴晨曦, 张旻, 王可人. 基于二级嵌套阵列的宽频段欠定波达方向估计[J]. 浙江大学学报(工学版), 2017, 51(5): 1016-1023.
[7] 孙伟, 杜家楠, 王林涛, 马宏辉. 盾构管片拼装机电液系统高速-低冲击控制方法[J]. 浙江大学学报(工学版), 2017, 51(10): 1948-1958.
[8] 易琳, 王班, 郭吉丰. Kevlar绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(7): 1376-1381.
[9] 易琳,王班,郭吉丰. 绳索非对称迟滞模型及参数识别[J]. 浙江大学学报(工学版), 2015, 49(4): 3-4.
[10] 项楠, 赵航芳, 宫先仪. 非寻复域状态-空间滤波[J]. J4, 2014, 48(4): 727-733.
[11] 叶霞,辛愿,刘勇,刘鹏. 基于媒体数字信号处理器的流预取机制[J]. J4, 2014, 48(2): 268-278.
[12] 彭雄斌,龚国芳,陈馈,王林涛. 管片拼装机提升缸模糊PID同步控制[J]. 浙江大学学报(工学版), 2014, 48(11): 2002-2008.
[13] 王林涛, 龚国芳, 施虎. 基于拼装参数优化的盾构机管片拼装节能技术[J]. J4, 2012, 46(12): 2259-2267.
[14] 张进高,卢琴芬,王利,叶云岳, 洪伟明. 基于FFT的直线电机地铁牵引电机功率因数角测量[J]. J4, 2012, 46(11): 1981-1984.
[15] 屠海滨,陈伟球,金贤玉. 基于压缩传感的EMI信号处理[J]. J4, 2012, 46(11): 2007-2012.