Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (1): 1-18    DOI: 10.3785/j.issn.1008-973X.2026.01.001
计算机技术     
CompuDEX:基于区块链的大模型微调算力共享平台
张凌浩1,2(),谭海波1,2,赵赫1,2,*(),陈中1,2,程昊天1,2,马志宇1,2
1. 中国科学技术大学 研究生院科学岛分院,安徽 合肥 230026
2. 中国科学院 合肥物质科学研究院,安徽 合肥 230031
CompuDEX: blockchain-based large model fine-tuning compute-power sharing platform
Linghao ZHANG1,2(),Haibo TAN1,2,He ZHAO1,2,*(),Zhong CHEN1,2,Haotian CHENG1,2,Zhiyu MA1,2
1. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China
2. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
 全文: PDF(1363 KB)   HTML
摘要:

利用分布在世界各地的闲置算力对大语言模型进行训练,有望提供全新的算力供应模式和削减训练成本. 针对此方法存在的隐私风险、恶意攻击和信任缺失问题,提出基于区块链的大模型微调算力共享平台CompuDEX. 充分利用区块链技术去信任、匿名的特性,提供无需信任中介且保护用户隐私的交易平台. 利用智能合约和密码学工具促使算力提供者公平竞争,以进一步降低训练成本. 基于零知识证明设计“红气球”激励机制与安全性方案,用于识别算力提供者的恶意行为并追责. 通过对微调方法LoRA的结构进行拆分,在不增加额外计算开销的前提下保护训练过程中的数据隐私. 实验结果表明,在微调的前向传播阶段,计算成本仅为国内主流云服务提供商的8%~14%. 通过增加并行节点的数量,运行时间可以从本地训练所需时间的175%显著减少到20%,甚至更低.

关键词: 区块链大模型微调外包计算隐私保护    
Abstract:

Utilizing idle computing resources distributed worldwide to train large language models provides a novel paradigm for supplying computing power while helping to reduce training costs. A blockchain-based large model fine-tuning compute-power sharing platform, CompuDEX, was proposed to address the challenges of privacy risks, malicious attacks and lack of trust associated with this method. The trustless and anonymous nature of blockchain technology was leveraged to create a transaction platform that eliminated the need for trusted intermediaries while protecting user privacy. The smart contracts and cryptographic tools were employed to encourage fair competition among compute power providers, further reducing training costs. A security scheme combined with a “Red Balloon” incentive mechanism was designed based on zero-knowledge proofs to identify and penalize the malicious behaviors of compute power providers. The structure of the fine-tuning method LoRA was split to ensure data privacy during the training process without introducing additional computational overhead. Experimental results showed that during the forward propagation phase of fine-tuning, the computational cost was only 8% to 14% of that charged by major domestic cloud service providers. By increasing the number of parallel nodes, the execution time was significantly reduced from 175% of the local training time to 20% or even lower.

Key words: blockchain    large model    fine-tuning    outsourced computation    privacy protection
收稿日期: 2025-03-25 出版日期: 2025-12-15
:  TP 393  
基金资助: 国家重点研发计划资助项目(2021YFB2700800);安徽省科技创新攻坚计划资助项目(202423k09020016).
通讯作者: 赵赫     E-mail: lhzhang1@mail.ustc.edu.cn;zhaoh@hfcas.ac.cn
作者简介: 张凌浩(2000—),男,硕士生,从事区块链和机器学习研究. orcid.org/0009-0001-8235-8860. E-mail:lhzhang1@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张凌浩
谭海波
赵赫
陈中
程昊天
马志宇

引用本文:

张凌浩,谭海波,赵赫,陈中,程昊天,马志宇. CompuDEX:基于区块链的大模型微调算力共享平台[J]. 浙江大学学报(工学版), 2026, 60(1): 1-18.

Linghao ZHANG,Haibo TAN,He ZHAO,Zhong CHEN,Haotian CHENG,Zhiyu MA. CompuDEX: blockchain-based large model fine-tuning compute-power sharing platform. Journal of ZheJiang University (Engineering Science), 2026, 60(1): 1-18.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.01.001        https://www.zjujournals.com/eng/CN/Y2026/V60/I1/1

图 1  CompuDEX架构概览
图 2  PreferMatch机制执行流程
图 3  基于零知识证明的“红气球”激励机制运行流程
挑战者比例/%GasUsed
N=4N=8N=16N=32
2534 04942 31262 93098 863
5036 49549 73570 229125 146
7537 57752 23285 337149 648
10038 09656 45796 180166 628
表 1  不同挑战者比例和报名人数对应的Gas消耗
图 4  CompuDEX与云服务商租用价格对比
图 5  不同网络传输方式的时延对比
网络环境tind/mstsum/h网络环境tind/mstsum/h
局域网5.392.43域名96.5343.45
公网IP95.8843.16WebSocket29.6713.36
表 2  不同网络环境中的tensor传输时间
压缩方式tc/mstd/mssc/KBr
32 KB/Gzip1.925.5916.811.97
32 KB/Bz22.4010.8114.852.23
40 KB/Gzip2.324.6120.781.98
40 KB/Bz22.6312.5218.292.25
64 KB/Gzip3.445.4032.741.99
64 KB/Bz23.5416.3028.392.30
表 3  不同压缩方式下tensor的压缩效率
sT/KBtraw/mstcomp/msttot/ms
GzipBz2GzipBz2
3226.3518.2117.8433.2344.26
4027.6820.7619.7634.6250.06
6439.0223.2021.6940.8861.37
表 4  直接传输和压缩传输的传输时间
图 6  签名与零知识证明在不同数据量下的耗时
图 7  真实环境中不同并行Provider数量的推理时间
图 8  并行Provider数量对生成token所需时间的影响
图 9  不同并行节点数量的网络带宽
图 10  挑战委员会被完全控制的概率变化
N?K平均轮数treq/mstext/ms
12501.82100.0760.07
21994.8879.8039.80
41608.8964.3624.36
81339.6153.5813.58
表 5  不同诚实挑战者数量下检查错误数据所需时间
方案匿名性隐私保护运行成本安全性通用性
Truebit×
PrivateLoRA×
CompuDEX
表 6  CompuDEX与其他算力瓶颈解决方案对比
1 GREGORY P A, BERT A G, PATERSON E L, et al The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nature Cell Biology, 2008, 10 (5): 593- 601
doi: 10.1038/ncb1722
2 FLORIDI L, CHIRIATTI M GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30 (4): 681- 694
doi: 10.1007/s11023-020-09548-1
3 DING N, QIN Y, YANG G, et al Parameter-efficient fine-tuning of large-scale pre-trained language models[J]. Nature Machine Intelligence, 2023, 5 (3): 220- 235
doi: 10.1038/s42256-023-00626-4
4 LIU H, TAM D, MUQEETH M, et al. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc, 2022: 1950–1965.
5 HU E J, SHEN Y, WALLIS P, et al. Lora: Low-rank adaptation of large language models [EB/OL]. (2021-06-17). https://arxiv.org/pdf/2106.09685.
6 WANG Y, LIN Y, ZENG X, et al. PrivateLoRA for efficient privacy preserving LLM [EB/OL]. (2023−11−23) [2025−03−10]. https://arxiv.org/abs/2311.14030.
7 赵敏, 田有亮, 熊金波, 等 基于同态加密的神经网络模型训练方法[J]. 计算机科学, 2023, 50 (5): 372- 381
ZHAO Min, TIAN Youliang, XIONG Jinbo, et al Neural network model training method based on homomorphic encryption[J]. Computer Science, 2023, 50 (5): 372- 381
doi: 10.11896/jsjkx.220300239
8 GOLLE P, MIRONOV I. Uncheatable distributed computations [C]// Topics in Cryptology—CT-RSA 2001. San Francisco: Springer, 2001: 425–440.
9 TIAN Y, NJILLA L, YUAN J, et al Low-latency privacy-preserving outsourcing of deep neural network inference[J]. IEEE Internet of Things Journal, 2021, 8 (5): 3300- 3309
doi: 10.1109/JIOT.2020.3003468
10 郭丽. 两种机器学习分类算法安全外包研究 [D]. 青岛: 青岛大学, 2023.
GUO Li. Research on secure outsourcing of two machine learning classification algorithms [D]. Qingdao: Qingdao University, 2023.
11 GENSYN. The machine learning compute protocol and our future [EB/OL]. (2023−06−12) [2025−03−10]. https://mirror.xyz/gensyn.eth/_K2v2uuFZdNnsHxVL3Bjrs4GORu3COCMJZJi7_MxByo.
12 TEUTSCH J, KATTAN F, SIMS B. Truebit unchained [EB/OL]. (2024−03−27) [2025−03−10]. https://truebit.io/unchained-report-2024.pdf.
13 夏虎, 田雯, 高建彬, 等 基于区块链的外包安全多方统计计算可验证隐私保护方案[J]. 无线电工程, 2024, 54 (4): 835- 847
XIA Hu, TIAN Wen, GAO Jianbin, et al Blockchain-based outsourcing secure multi-party statistical computation verifiable privacy protection scheme[J]. Radio Engineering, 2024, 54 (4): 835- 847
doi: 10.3969/j.issn.1003-3106.2024.04.007
14 ZHENG Z, XIE S, DAI H N, et al Blockchain challenges and opportunities: a survey[J]. International Journal of Web and Grid Services, 2018, 14 (4): 352- 375
doi: 10.1504/IJWGS.2018.095647
15 XU J, WANG C, JIA X A survey of blockchain consensus protocols[J]. ACM Computing Surveys, 2023, 55 (13s): 1- 35
16 GERVAIS A, KARAME G O, WÜST K, et al. On the security and performance of proof of work blockchains [C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna: ACM, 2016: 3–16.
17 MOHANTA B K, PANDA S S, JENA D. An overview of smart contract and use cases in blockchain technology [C]// Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies. Bengaluru: IEEE, 2018: 1–4.
18 ZAKEN E B, GOLDBERG Y, RAVFOGEL S. BitFit: simple parameter-efficient fine-tuning for transformer-based masked language-models [C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Dublin: ACL, 2022: 1–9.
19 MROUE H, PARREIN B, HAMRIOUI S, et al LoRa+: an extension of LoRaWAN protocol to reduce infrastructure costs by improving the quality of service[J]. Internet of Things, 2020, 9: 100176
doi: 10.1016/j.iot.2020.100176
20 LIU S Y, WANG C Y, YIN H, et al. DoRA: weight-decomposed low-rank adaptation [C]// Proceedings of the 41st International Conference on Machine Learning. Vienna: PMLR, 2024: 32100–32121.
21 FLEISCHHACKER N, JAGER T, SCHRÖDER D On tight security proofs for Schnorr signatures[J]. Journal of Cryptology, 2019, 32 (2): 566- 599
doi: 10.1007/s00145-019-09311-5
22 ZHANG Q. An overview and analysis of hybrid encryption: the combination of symmetric encryption and asymmetric encryption [C]// Proceedings of the 2nd International Conference on Computing and Data Science. Stanford: IEEE, 2021: 616–622.
23 HUANG J, KONG L, CHEN G, et al Towards secure industrial IoT: blockchain system with credit-based consensus mechanism[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (6): 3680- 3689
doi: 10.1109/TII.2019.2903342
24 DOUCEUR J R. The sybil attack [C]// International Workshop on Peer-to-Peer Systems. Cambridge: Springer, 2002: 251–260.
25 MATSUNAGA T, ZHANG Y, SASABE M, et al. Reward and penalty mechanism in proof-of-stake consensus algorithm for blockchain [C]// International Conference on Emerging Technologies for Communications. [S.l.]: IEICE Communications Society, 2020: E1-5.
26 BOISVERT R F, LI K H Reservoir-sampling algorithms of time complexity O(n(1+log(N/n)))[J]. ACM Transactions on Mathematical Software, 1994, 20 (4): 481- 493
doi: 10.1145/198429.198435
27 TANG J C, CEBRIAN M, GIACOBE N A, et al Reflecting on the DARPA red balloon challenge[J]. Communications of the ACM, 2011, 54 (4): 78- 85
doi: 10.1145/1924421.1924441
28 SUN X, YU F R, ZHANG P, et al A survey on zero-knowledge proof in blockchain[J]. IEEE Network, 2021, 35 (4): 198- 205
doi: 10.1109/MNET.011.2000473
29 GAUTAM B, THOMA P, YOUSSEF E H, et al. Consensys/gnark [EB/OL]. (2024−11−21) [2025−03−10]. https://github.com/Consensys/gnark.
30 TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models [EB/OL]. (2023−07−19) [2025−03−10]. https://arxiv.org/abs/2307.09288.
31 GLIWA B, MOCHOL I, BIESEK M, et al. SAMSum corpus: a human-annotated dialogue dataset for abstractive summarization [C]// Proceedings of the 2nd Workshop on New Frontiers in Summarization. Hong Kong: ACL, 2019: 70–79.
32 CoinEx Explorer. 全网算力 [EB/OL]. (2024−07−25) [2025−03−10]. https://explorer.coinex.com/btc/statistics/mining/fullnetwork?lang=zh_Hans_CN.
33 CRYPTO D N. Ethereum staking surges to 47 million ETH during PoS transition, triples supply in two years [EB/OL]. (2024−07−25) [2025−03−10]. https://www.binance.com/zh-CN/square/post/10785003107794?ref=360939810.
34 APONTE-NOVOA F A, OROZCO A L S, VILLANUEVA-POLANCO R, et al The 51% attack on blockchains: a mining behavior study[J]. IEEE Access, 2021, 9: 140549- 140564
doi: 10.1109/ACCESS.2021.3119291
35 JAMESON H. Ethereum protocol development governance and network upgrade coordination [EB/OL]. (2020−03−23) [2025−03−10]. https://hudsonjameson.com/posts/2020−03-23-ethereum-protocol-development-governance-and-network-upgrade-coordination.
36 CoinGecko [EB/OL]. [2025−08−02]. https://www.coingecko.com/en/coins/tornado-cash.
37 SPAGNUOLO M, MAGGI F, ZANERO S. BitIodine: extracting intelligence from the Bitcoin network [C]// Financial Cryptography and Data Security: 18th International Conference. Christ Church: Springer, 2014: 457–468.
38 KOSHY P, KOSHY D, MCDANIEL P. An analysis of anonymity in Bitcoin using P2P network traffic [C]// Financial Cryptography and Data Security: 18th International Conference. Christ Church: Springer, 2014: 469–485.
39 梁秀波, 吴俊涵, 赵昱, 等 区块链数据安全管理和隐私保护技术研究综述[J]. 浙江大学学报: 工学版, 2022, 56 (1): 1- 15
LIANG Xiubo, WU Junhan, ZHAO Yu, et al Review of blockchain data security management and privacy protection technology research[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (1): 1- 15
40 LI X, MEI Y, GONG J, et al A blockchain privacy protection scheme based on ring signature[J]. IEEE Access, 2020, 8: 76765- 76772
doi: 10.1109/ACCESS.2020.2987831
41 SAMUEL O, JAVAID N GarliChain: a privacy preserving system for smart grid consumers using blockchain[J]. International Journal of Energy Research, 2022, 46 (15): 21643- 21659
doi: 10.1002/er.7040
42 MAYMOUNKOV P, MAZIÈRES D. Kademlia: a peer-to-peer information system based on the XOR metric [C]// International Workshop on Peer-to-Peer Systems. Berlin: Springer, 2002: 53–65.
43 LI Y, YANG G, SUSILO W, et al Traceable Monero: anonymous cryptocurrency with enhanced accountability[J]. IEEE Transactions on Dependable and Secure Computing, 2021, 18 (2): 679- 691
doi: 10.1109/TDSC.2019.2910058
44 蔡睿, 葛军, 孙哲, 等 AI预训练大模型发展综述[J]. 小型微型计算机系统, 2024, 45 (10): 2327- 2337
CAI Rui, GE Jun, SUN Zhe, et al Overview of the development of AI pre-trained large models[J]. Journal of Chinese Computer Systems, 2024, 45 (10): 2327- 2337
45 JAIN S M. Introduction to Remix IDE [M]// A brief introduction to web3: decentralized web fundamentals for app development. Berkeley: Apress, 2022: 89–126.
46 KALODNER H, GOLDFEDER S, CHEN X, et al. Arbitrum: scalable, private smart contracts [C]// SEC'18: Proceedings of the 27th USENIX Conference on Security Symposium. Baltimore: USENIX Association, 2018: 1353–1370.
47 pyca/cryptography [EB/OL]. [2025−03−10]. https://github.com/pyca/cryptography.
[1] 张学军,邝浚鑫,李成泽,李梅,张斌,加小红. 去中心化的室内定位众包数据质量控制方法[J]. 浙江大学学报(工学版), 2025, 59(9): 1814-1825.
[2] 黄荣,杨文琴,宋志刚. 基于区块链的可信分布式工业数据治理方案[J]. 浙江大学学报(工学版), 2025, 59(2): 269-277.
[3] 王沁雪,张文芳. 基于紧凑零知识证明的海上位置共享方案[J]. 浙江大学学报(工学版), 2025, 59(11): 2409-2417.
[4] 邵子豪,霍如,王志浩,倪东,谢人超. 基于区块链的移动群智感知数据处理研究综述[J]. 浙江大学学报(工学版), 2024, 58(6): 1091-1106.
[5] 申自浩,刘梦珂,王辉,刘沛骞,刘琨. 基于区块链的用户自定义位置共享方案[J]. 浙江大学学报(工学版), 2024, 58(4): 655-663.
[6] 刘雪娇,赵祥,夏莹杰,曹天聪. 空地协同场景下具有隐私保护的高效异构认证方案[J]. 浙江大学学报(工学版), 2024, 58(10): 1981-1991.
[7] 赵越,赵赫,谭海波,余斌,俞望年,马志宇. 基于小世界理论的区块链Kademlia网络改进方法[J]. 浙江大学学报(工学版), 2024, 58(1): 1-9.
[8] 申自浩,唐雨雨,王辉,刘沛骞,刘琨. 基于聚类和深度学习的车联网轨迹隐私保护机制[J]. 浙江大学学报(工学版), 2024, 58(1): 20-28.
[9] 崔璨,杨小虎,邱炜伟,黄方蕾. 基于GPU的区块链交易验签加速技术[J]. 浙江大学学报(工学版), 2023, 57(8): 1505-1515.
[10] 王传华,张权,王慧敏,徐欣,麻瓯勃. 区块链架构下具有隐私保护的车联网信誉模型[J]. 浙江大学学报(工学版), 2023, 57(4): 760-772.
[11] 刘雪娇,宋庆武,夏莹杰. 基于区块链的车联网矩阵计算安全卸载方案[J]. 浙江大学学报(工学版), 2023, 57(1): 144-154.
[12] 杨晋生,王浩,高镇,郭朝晖. 基于双RSA累加器的无状态交易验证方案[J]. 浙江大学学报(工学版), 2023, 57(1): 178-189.
[13] 刘雪娇,王慧敏,夏莹杰,赵思苇. 具有隐私保护的车联网空间众包任务分配方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1267-1275.
[14] 何苗,柏粉花,于卓,沈韬. 区块链中可公开验证密钥共享技术[J]. 浙江大学学报(工学版), 2022, 56(2): 306-312.
[15] 董思含,信俊昌,郝琨,姚钟铭,陈金义. 多区块链环境下的连接查询优化算法[J]. 浙江大学学报(工学版), 2022, 56(2): 313-321.