Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (7): 1267-1275    DOI: 10.3785/j.issn.1008-973X.2022.07.001
计算机技术、信息技术     
具有隐私保护的车联网空间众包任务分配方法
刘雪娇1(),王慧敏1,夏莹杰2,*(),赵思苇1
1. 杭州师范大学 信息科学与技术学院,浙江省密码技术重点实验室,浙江 杭州 311121
2. 浙江大学 计算机科学与技术学院,浙江 杭州 310027
Task allocation method for Internet of vehicles spatial crowdsourcing with privacy protection
Xue-jiao LIU1(),Hui-min WANG1,Ying-jie XIA2,*(),Si-wei ZHAO1
1. Key Laboratory of Cryptography of Zhejiang Province, School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1158 KB)   HTML
摘要:

为了解决传统车联网空间众包中集中式空间众包服务器不可信和易遭受攻击给用户隐私带来极大威胁的问题,提出区块链架构下具有隐私保护的车联网空间众包任务分配方法. 基于区块链技术,设计分布式可信的车联网空间众包系统. 采用多密钥全同态加密算法实现任务分配,支持对不同车辆用户 (密钥) 的密文数据进行任务分配,降低隐私泄露的可能性. 实验分析表明,采用该方法能够有效地保护用户隐私信息,任务分配的计算时间开销与现有研究方法相比下降了34.3%,提高了任务分配的效率.

关键词: 车联网空间众包隐私保护任务分配区块链    
Abstract:

A task allocation method for Internet of vehicles spatial crowdsourcing with privacy protection was proposed under the blockchain architecture in order to solve the problem that centralized spatial crowdsourcing server in the traditional spatial crowdsourcing of Internet of vehicles was untrusted and vulnerable to malicious attacks, which posed a great threat to users’ privacy. A distributed and trusted spatial crowdsourcing system of Internet of vehicles was designed based on the blockchain technology. The multi-key homomorphic encryption algorithm was adopted to distribute tasks, which supported task allocation of location ciphertext data of different vehicle users (keys). Then the possibility of privacy disclosure of vehicle users was reduced. The experimental results show that the proposed method can effectively protect users’ privacy information, reduce the computing overhead of task allocation by 34.3% compared with the existing methods, and improve the efficiency of task allocation.

Key words: Internet of vehicles    spatial crowdsourcing    privacy protection    task allocation    blockchain
收稿日期: 2021-12-23 出版日期: 2022-07-26
CLC:  TP 399  
基金资助: 国家自然科学基金资助项目(61873232);浙江省自然科学基金资助项目(LZ22F030004);公安部重点实验室资助项目(2020DSJSYS005)
通讯作者: 夏莹杰     E-mail: liuxuejiao@hznu.edu.cn;xiayingjie@zju.edu.cn
作者简介: 刘雪娇(1984—),女,副教授,从事车联网安全的研究. orcid.org/0000-0003-1821-2864. E-mail: liuxuejiao@hznu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
刘雪娇
王慧敏
夏莹杰
赵思苇

引用本文:

刘雪娇,王慧敏,夏莹杰,赵思苇. 具有隐私保护的车联网空间众包任务分配方法[J]. 浙江大学学报(工学版), 2022, 56(7): 1267-1275.

Xue-jiao LIU,Hui-min WANG,Ying-jie XIA,Si-wei ZHAO. Task allocation method for Internet of vehicles spatial crowdsourcing with privacy protection. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1267-1275.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.07.001        https://www.zjujournals.com/eng/CN/Y2022/V56/I7/1267

图 1  分布式可信车联网空间众包系统
图 2  车联网空间众包流程
符号 含义
$\ell \left( x \right)$ $ x $的比特长度
$ {\lambda _1} $ $ {\lambda _2} $ 部分强私钥
${\rm{p}}{{\rm{k}}_x}$ ${\rm{s}}{{\rm{k}}_x}$ 实体 $ x $的密钥对
${\left[ m \right]_{{\rm{p}}{{\rm{k}}_x} } }$ 使用 ${\rm{p}}{{\rm{k}}_x}$加密 $ m $的密文
${\rm{p}}{{\rm{k}}_\Sigma }$ 当前系统的联合公钥
${{H} }$ 哈希函数
表 1  方法的符号说明
图 3  各方法的任务分配成功率
图 4  整体的计算时间开销
图 5  任务分配的计算时间开销
1 KAZEMI L, SHAHABI C. Geocrowd: enabling query answering with spatial crowdsourcing [C]// Proceedings of the 20th International Conference on Advances in Geographic Information Systems. Redondo Beach: ACM, 2012: 189-198.
2 ZHANG C, ZHU L, XU C, et al A privacy-preserving traffic monitoring scheme via vehicular crowdsourcing[J]. Sensors, 2019, 19 (6): 1274
doi: 10.3390/s19061274
3 TONG Y, ZHOU Z, ZENG Y, et al Spatial crowdsourcing: a survey[J]. The VLDB Journal, 2020, 29 (1): 217- 250
doi: 10.1007/s00778-019-00568-7
4 HAN S, LIN J, ZHAO S, et al Location privacy-preserving distance computation for spatial crowdsourcing[J]. IEEE Internet of Things Journal, 2020, 7 (8): 7550- 7563
doi: 10.1109/JIOT.2020.2985454
5 LIU A, LI Z X, LIU G F, et al Privacy-preserving task assignment in spatial crowdsourcing[J]. Journal of Computer Science and Technology, 2017, 32 (5): 905- 918
doi: 10.1007/s11390-017-1772-5
6 LIN F, WEI J, LI J, et al Local privacy-preserving dynamic worker locations in spatial crowdsourcing[J]. IEEE Access, 2021, 9: 27359- 27373
doi: 10.1109/ACCESS.2021.3058574
7 HUANG C, LU R, ZHU H Privacy-friendly spatial crowdsourcing in vehicular networks[J]. Journal of Communications and Information Networks, 2017, 2 (2): 59- 74
doi: 10.1007/s41650-017-0017-7
8 NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system [EB/OL]. (2017-12-20). https:// bitcoin.org/bitcoin.pdf.
9 LIU X, DENG R H, CHOO K K R, et al An efficient privacy-preserving outsourced calculation toolkit with multiple keys[J]. IEEE Transactions on Information Forensics and Security, 2016, 11 (11): 2401- 2414
doi: 10.1109/TIFS.2016.2573770
10 LI M, WENG J, YANG A, et al CrowdBC: a blockchain-based decentralized framework for crowdsourcing[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30 (6): 1251- 1266
11 YANG M, ZHU T, LIANG K, et al A blockchain-based location privacy-preserving crowdsensing system[J]. Future Generation Computer Systems, 2019, 94: 408- 418
doi: 10.1016/j.future.2018.11.046
12 ZHANG J, YANG F, MA Z, et al A decentralized location privacy-preserving spatial crowdsourcing for Internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (4): 2299- 2313
13 WANG S, TAHA A F, WANG J. Blockchain-assisted crowdsourced energy systems[C]// 2018 IEEE Power and Energy Society General Meeting. Portland: IEEE, 2018: 1-5.
14 PINTO G, DIAS J P, FERREIRA H S. Blockchain-based PKI for crowdsourced IoT sensor information [C]// International Conference on Soft Computing and Pattern Recognition. Cham: Springer, 2018: 248-257.
15 WU Y, TANG S, ZHAO B, et al BPTM: Blockchain-based privacy-preserving task matching in crowdsourcing[J]. IEEE Access, 2019, 7: 45605- 45617
doi: 10.1109/ACCESS.2019.2908265
16 WANG L, LIU G, SUN L A secure and privacy-preserving navigation scheme using spatial crowdsourcing in fog-based vanets[J]. Sensors, 2017, 17 (4): 668
doi: 10.3390/s17040668
17 NIU B, LI Q, ZHU X, et al. Achieving k-anonymity in privacy-aware location-based services [C]//IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 754-762.
18 OU L, QIN Z, LIU Y, et al. Multi-user location correlation protection with differential privacy [C]// 2016 IEEE 22nd International Conference on Parallel and Distributed Systems. Wuhan: IEEE, 2016: 422-429.
19 TO H, GHINITA G, SHAHABI C A framework for protecting worker location privacy in spatial crowdsourcing[J]. Proceedings of the VLDB Endowment, 2014, 7 (10): 919- 930
doi: 10.14778/2732951.2732966
20 TO H, GHINITA G, FAN L, et al Differentially private location protection for worker datasets in spatial crowdsourcing[J]. IEEE Transactions on Mobile Computing, 2016, 16 (4): 934- 949
21 SHEN Y, HUANG L, LI L, et al. Towards preserving worker location privacy in spatial crowdsourcing [C]// 2015 IEEE Global Communications Conference. San Diego: IEEE, 2015: 1-6.
22 LIU A, WANG W, SHANG S, et al Efficient task assignment in spatial crowdsourcing with worker and task privacy protection[J]. GeoInformatica, 2018, 22 (2): 335- 362
doi: 10.1007/s10707-017-0305-2
23 LIU B, CHEN L, ZHU X, et al. Protecting location privacy in spatial crowdsourcing using encrypted data [C]// Proceedings of the 20th International Conference on Extending Database Technology. Venice:[s. n.], 2017: 478–481.
24 ZHANG J, JIANG Z L, LI P, et al Privacy-preserving multi-key computing framework for encrypted data in the cloud[J]. Information Sciences, 2021, 575: 217- 230
doi: 10.1016/j.ins.2021.06.017
25 ZHANG S, RAY S, LU R, et al Preserving location privacy for outsourced most-frequent item query in mobile crowdsensing[J]. IEEE Internet of Things Journal, 2021, 8 (11): 9139- 9150
doi: 10.1109/JIOT.2021.3056442
26 YANG D, XUE G, FANG X, et al. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing [C]// Proceedings of the 18th Annual International Conference on Mobile Computing and Networking. Istanbul: ACM, 2012: 173-184.
27 BRESSON E, CATALANO D, POINTCHEVAL D. A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications [C]// International Conference on the Theory and Application of Cryptology and Information Security. Berlin: Springer, 2003: 37-54.
28 HUANG X, ZHAO D, PENG H Empirical study of DSRC performance based on safety pilot model deployment data[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18 (10): 2619- 2628
doi: 10.1109/TITS.2017.2649538
29 YANG X, YI X, KHALIL I, et al A lightweight authentication scheme for vehicular ad hoc networks based on MSR[J]. Vehicular Communications, 2019, 15: 16- 27
doi: 10.1016/j.vehcom.2018.11.001
[1] 张海波,刘子琪,刘开健,徐勇军. 活跃度感知的社交车辆分簇算法[J]. 浙江大学学报(工学版), 2022, 56(5): 1044-1054.
[2] 何苗,柏粉花,于卓,沈韬. 区块链中可公开验证密钥共享技术[J]. 浙江大学学报(工学版), 2022, 56(2): 306-312.
[3] 董思含,信俊昌,郝琨,姚钟铭,陈金义. 多区块链环境下的连接查询优化算法[J]. 浙江大学学报(工学版), 2022, 56(2): 313-321.
[4] 梁秀波,吴俊涵,赵昱,尹可挺. 区块链数据安全管理和隐私保护技术研究综述[J]. 浙江大学学报(工学版), 2022, 56(1): 1-15.
[5] 刘雪娇,殷一丹,陈蔚,夏莹杰,许佳丽,韩立东. 基于区块链的车联网数据安全共享方案[J]. 浙江大学学报(工学版), 2021, 55(5): 957-965.
[6] 陈蔚,刘雪娇,夏莹杰. 基于层次分析法的车联网多因素信誉评价模型[J]. 浙江大学学报(工学版), 2020, 54(4): 722-731.
[7] 张磊,张菁. 支持数据实用性和容错的差分隐私保护方案[J]. 浙江大学学报(工学版), 2019, 53(8): 1496-1505.
[8] 盛念祖, 李芳, 李晓风, 赵赫, 周桐. 基于区块链智能合约的物联网数据资产化方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2150-2158.
[9] 刘加海,杨茂林,雷航,廖勇. 共享资源约束下多核实时任务分配算法[J]. J4, 2014, 48(1): 113-117.
[10] 皮俊波, 陈珂, 陈刚, 董金祥. 基于用户兴趣模型两段式排序的隐私保护方法[J]. J4, 2010, 44(9): 1659-1665.
[11] 彭志宇, 李善平, 杨朝晖, 林欣. 信任管理中的匿名授权方法[J]. J4, 2010, 44(5): 897-902.
[12] 唐军, 金心宇, 张昱. 视频传感器网络基于位置的任务分配算法[J]. J4, 2010, 44(4): 670-674.
[13] 马进, 李锋, 李建华. 分布式数据挖掘中基于扰乱的隐私保护方法[J]. J4, 2010, 44(2): 276-282.
[14] 祝勇, 潘晓弘, 王正肖. 电子制造供应链采购任务分配[J]. J4, 2009, 43(10): 1864-1869.
[15] 董炀斌 蒋静坪 何衍. 基于适应度的多机器人任务分配策略[J]. J4, 2007, 41(2): 272-277.