Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 1044-1054    DOI: 10.3785/j.issn.1008-973X.2022.05.022
电子与通信工程     
活跃度感知的社交车辆分簇算法
张海波1,2(),刘子琪1,2,刘开健1,2,徐勇军1
1. 重庆邮电大学 通信与信息工程学院,重庆 400065
2. 移动通信教育部工程研究中心,重庆 400065
Activity-aware social vehicle clustering algorithm
Hai-bo ZHANG1,2(),Zi-qi LIU1,2,Kai-jian LIU1,2,Yong-jun XU1
1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. Engineering Research Center of Mobile Communications, Ministry of Education, Chongqing 400065, China
 全文: PDF(2131 KB)   HTML
摘要:

为了解决车联网(IoV)中因车辆高速移动和拓扑结构多变导致的车辆间数据传输链路不稳定甚至中断的问题,提出一种活跃度感知的社交车辆分簇算法. 在簇头(CH)筛选过程中,考虑由相对加速度、速度和相对距离构成的移动相似性分值以及由兴趣相似度定义的社交相似性分值,加权求和得到车辆相似性分值. 利用基数排序算法排序并筛选出分值最高者作为簇头候选者(CHc),保证集群的稳定性. 引入由车辆历史数据处理量和车辆请求资源次数构成的活跃度的概念,通过对其进行判断,从簇头候选者中筛选出真正有社交意愿和能力的簇头,提升簇内亲密度. 使用OMNet++平台进行仿真,结果表明,与传统算法相比,采用所提算法,能使得集群在保持稳定性的同时,亲密度有所提升.

关键词: 车联网(IoV)活跃度分簇算法社交相似性亲密度    
Abstract:

An activity-aware social vehicle clustering algorithm was proposed, in order to solve the problem of instability or interruption of data transmission link between vehicles due to the high mobility of vehicles and the changeable topology in the Internet of Vehicles (IoV). In the cluster head (CH) selection process, the mobility similarity score composed of relative acceleration, speed and distance and social similarity score defined by interest similarity were considered, then were weighted and summed to obtain similarity score. The radix sorting algorithm was used to sort and select cluster head candidates (CHc) with highest scores, which ensured the stability. Activity degree consisting of the amount of historical processed data and the number of requests for resources was introduced. By measuring it, the CH with real social willingness and ability was selected from CHcs, and this increases the intimacy within clusters. Simulation results on the OMNet++ platform show that compared with traditional algorithms, the proposed algorithm maintains the stability of the cluster while increasing the intimacy.

Key words: Internet of Vehicles (IoV)    activity degree    clustering algorithm    social similarity    intimacy
收稿日期: 2021-09-29 出版日期: 2022-05-31
CLC:  TN   
  92 (Hydrospheric and atmospheric geophysics)  
基金资助: 国家自然科学基金资助项目(61801065);长江学者和创新团队发展计划基金资助项目(IRT16R72);重庆市留创计划创新类资助项目(cx2020059)
作者简介: 张海波(1979—)男,副教授,博士,从事车联网研究. orcid.org/0000-0003-2719-9956. E-mail: zhanghb@cqupt.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张海波
刘子琪
刘开健
徐勇军

引用本文:

张海波,刘子琪,刘开健,徐勇军. 活跃度感知的社交车辆分簇算法[J]. 浙江大学学报(工学版), 2022, 56(5): 1044-1054.

Hai-bo ZHANG,Zi-qi LIU,Kai-jian LIU,Yong-jun XU. Activity-aware social vehicle clustering algorithm. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 1044-1054.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.022        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/1044

图 1  区块链辅助的车载社交网络架构
图 2  活跃度感知的社交车辆集群形成图
状态 状态说明
未定义 (undefined, UD) 所有车辆的初始状态,此状态下车辆不属于任何簇
簇头(cluster head, CH) 簇内的唯一领导者,通过一跳成员列表查询簇员状态信息
簇员(cluster meber, CM) 与簇头有相同兴趣的
一跳邻居车辆
簇头候选者(cluster head candidate, CHc) 仅在分簇过程中暂时存在,簇头选定后就会消失
表 1  车辆状态说明表
图 3  分簇过程中车辆的状态转换图
图 4  簇头选举流程图
图 5  SUMO仿真道路场景图
参数名称 取值
仿真时间 ${T^{ {\text{sim} } } }$/s 500
MAC协议 802.11p
车辆数量 $ N $/辆 500
稳定通信范围 $D_{\rm{v}}^{ {\text{st} } }$/m 200~500
最大车速 ${V_{{\text{MAX}}}}$/(km?h?1) 60
道路长度 $ L $/km 5
车辆长度/m 5
加速度/(m?s?2) 2.6
减速度/(m?s?2) 4.5
BI/s 1
$q$ 0.2
路径损耗模型 2径模型
迭代次数 $ \xi $[21]/次 10
表 2  车辆分簇过程仿真设置参数表
图 6  车辆间稳定通信距离对成簇数的影响
图 7  稳定通信距离和成簇数对集群持续时间的影响
图 8  稳定通信距离和成簇数对集群车辆数量的影响
图 9  最大车速对集群稳定性的影响
图 10  不同分簇算法下最大车速对集群持续时间的影响
图 11  不同分簇算法下最大车速对集群不同状态车辆数量的影响
图 12  权重因子对车辆总相似性分值的影响
场景 ${V_{{\rm{MAX}}} }$/(km?h?1) $D_{\rm{v}}^{ {\text{st} } }$/m $q$
堵车道路 18[23] 200 (0.1, 1.0]
城市道路 60 300 (0.2, 1.0]
高速道路 100 400 (0, 0.2]
表 3  3种典型道路场景说明
图 13  不同道路场景下权重因子对车辆总相似性分值的影响
图 14  车辆V1~V5的4种分值散点图
算法 IDCH $ S_i^{{\text{Act}}} $ $ S_i^{{\text{tot}}} \left( {q = 0.2} \right) $ $ {S_i} $ $ {I_i} $
本研究所提分簇算法 V4 0.65 0.8124 0.823 0.7700
经典最小编号分簇算法 V1 0.58 0.7795 0.793 0.7253
自适应分簇算法 V3 0.61 0.8080 0.840 0.6800
动态分簇算法 V3 0.61 0.8080 0.840 0.6800
表 4  簇头筛选结果对比
1 CHEN S, HU J, SHI Y, et al A vision of C-V2X: technologies, field testing and challenges with chinese development[J]. IEEE Internet of Things Journal, 2020, 7 (5): 3872- 3881
doi: 10.1109/JIOT.2020.2974823
2 NING Z L, DONG P, WANG X, et al When deep reinforcement learning meets 5G vehicular networks: a distributed offloading framework for traffic big data[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (2): 1352- 1361
3 张海霞, 李腆腆, 李东阳, 等 基于车辆行为分析的智能车联网关键技术研究[J]. 电子与信息学报, 2020, (1): 36- 49
ZHANG Hai-xia, LI Tian-tian, LI Dong-yang, et al Research on vehicle behavior analysis based technologies for intelligent vehicular networks[J]. Jounal of Electronics and Information Technology, 2020, (1): 36- 49
doi: 10.11999/JEIT190820
4 ALSABAH M K J, TRABELSI H, JERBI W. Survey on clustering in VANET networks[C]// The 18th International Multi-Conference on Systems, Signals and Devices (SSD). Monastir: IEEE, 2021: 493-502.
5 LIN C R, GERLA M Adaptive clustering for mobile wireless networks[J]. IEEE Journal on Selected Areas in Communications, 1997, 15 (7): 1265- 1275
doi: 10.1109/49.622910
6 REN M, KHOUKHI L, LABIOD H, et al A mobility-based scheme for dynamic clustering in vehicular ad-hoc networks (VANETs)[J]. Vehicular Communications, 2017, 9: 233- 241
doi: 10.1016/j.vehcom.2016.12.003
7 KANG J, MA H, DUAN Z, et al. Vehicle trajectory clustering in urban road network environment based on Doc2Vec model[C]// IEEE 2021 International Joint Conference on Neural Networks (IJCNN). Shenzhen: IEEE, 2021: 1-8.
8 SENNAN S, RAMASUBBAREDDY S, BALAASUBRAMANIVAM S, et al MADCR: mobility aware dynamic clustering-based routing protocol in Internet of Vehicles[J]. China Communications, 2021, 18 (7): 69- 85
doi: 10.23919/JCC.2021.07.007
9 DAEINABI A, RAHBAR A G P, KHADEMZADEH A VWCA: an efficient clustering algorithm in vehicular ad hoc networks[J]. Journal of Network and Computer Applications, 2011, 34 (1): 207- 222
doi: 10.1016/j.jnca.2010.07.016
10 GARBISO J, DIACONESCU A, COUPECHOUX M, et al Fair self-adaptive clustering for hybrid cellular-vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (2): 1225- 1236
11 TSCHORSCH F, SCHEUERMANN B Bitcoin and beyond: a technical survey on decentralized digital currencies[J]. IEEE Communications Surveys and Tutorials, 2016, 18 (3): 2084- 2123
doi: 10.1109/COMST.2016.2535718
12 LIN X, WU J, MUMTAZ S, et al Blockchain-based on-demand computing resource trading in IoV-assisted smart city[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 9 (3): 1373- 1385
13 JIANG T, FANG H, WANG H Blockchain-based Internet of Vehicles: distributed network architecture and performance analysis[J]. IEEE Internet of Things Journal, 2019, 6: 4640- 4649
doi: 10.1109/JIOT.2018.2874398
14 FAN K, PAN Q, ZHANG K, et al A secure and verifiable data sharing scheme based on blockchain in vehicular social networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (6): 5826- 5835
doi: 10.1109/TVT.2020.2968094
15 OUBABAS S, AOUDJIT R, RODRIGUES J J P C, et al Secure and stable vehicular ad hoc network clustering algorithm based on hybrid mobility similarities and trust management scheme[J]. Vehicular Communications, 2018, 13: 128- 138
doi: 10.1016/j.vehcom.2018.08.001
16 WANG M M, SUN S L, LI Y J A compressive tracking method based on Gaussian differential graph and weighted cosine similarity metric[J]. IEEE Signal Processing Letters, 2016, 25 (4): 501- 505
17 MURRE J M J, DROS J Replication and analysis of Ebbinghaus’ forgetting curve[J]. PloSOne, 2015, 10 (7): e0120644
doi: 10.1371/journal.pone.0120644
18 LI G, YANG Z, CHEN S, et al. A traffic flow-based and dynamic grouping-enabled resource allocation algorithm for LTE-D2D vehicular networks[C]// IEEE/CIC International Conference on Communications in China (ICCC). Chengdu: IEEE, 2016: 1-6.
19 LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using sumo[C]// The 21st International Conference on Intelligent Transportation Systems (ITSC). Maui: IEEE, 2018: 2575-2582.
20 SOMEER C, GERMAN R, DRESSLER F Bidirectionally coupled network and road traffic simulation for improved IVC analysis[J]. IEEE Transactions on Mobile Computing, 2010, 10 (1): 3- 15
21 BERSALI M, RACHEDI A, BOUARFA H. A new collaborative clustering approach for the Internet of Vehicles (CCA-IoV)[C]//The Second International Conference on Embedded and Distributed Systems (EDiS). Oran: IEEE, 2020: 58-63.
22 KAMOI R N, JUNIOR L A P, VERRI F A N, et al Platoon grouping network offloading mechanism for VANETs[J]. IEEE Access, 2021, 9: 53936- 53951
doi: 10.1109/ACCESS.2021.3071085
23 水宜水. 面向车联网安全环境的V2V信息传输与可变限速控制研究[D]. 武汉: 武汉理工大学, 2019: 8.
SHUI Yi-shui. Research on V2V Information transmission and variable speed limit control for vehicle network security environment[D]. Wuhan: Wuhan University of Technology, 2019: 8.
[1] 刘雪娇,殷一丹,陈蔚,夏莹杰,许佳丽,韩立东. 基于区块链的车联网数据安全共享方案[J]. 浙江大学学报(工学版), 2021, 55(5): 957-965.