计算机技术 |
|
|
|
|
基于GPU的区块链交易验签加速技术 |
崔璨1(),杨小虎1,*(),邱炜伟2,黄方蕾2 |
1. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 2. 杭州趣链科技有限公司,浙江 杭州 310000 |
|
GPU-based acceleration technology for signature verification of blockchain transactions |
Can CUI1(),Xiao-hu YANG1,*(),Wei-wei QIU2,Fang-lei HUANG2 |
1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China 2. Hangzhou Qulian Technology Co. Ltd, Hangzhou 310000, China |
引用本文:
崔璨,杨小虎,邱炜伟,黄方蕾. 基于GPU的区块链交易验签加速技术[J]. 浙江大学学报(工学版), 2023, 57(8): 1505-1515.
Can CUI,Xiao-hu YANG,Wei-wei QIU,Fang-lei HUANG. GPU-based acceleration technology for signature verification of blockchain transactions. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1505-1515.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.08.004
或
https://www.zjujournals.com/eng/CN/Y2023/V57/I8/1505
|
1 |
MEMON M, HUSSAIN S S, BAJWA U A, et al. Blockchain beyond bitcoin: blockchain technology challenges and real-world applications [C]// 2018 International Conference on Computing, Electronics and Communications Engineering (iCCECE). Southend: IEEE, 2018: 29-34.
|
2 |
WANG J, WANG H. Monoxide: scale out blockchains with asynchronous consensus zones [C]// 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). Boston: USENIX Association, 2019: 95-112.
|
3 |
ZAMANI M, MOVAHEDI M, RAYKOVA M. Rapidchain: scaling blockchain via full sharding [C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: Association for Computing Machinery, 2018: 931-948.
|
4 |
CHUNG G, DESROSIERS L, GUPTA M, et al. Performance tuning and scaling enterprise blockchain applications [EB/OL]. (2019-12-24) [2022-10-09]. http://arxiv.org/abs/1912.11456.
|
5 |
MELONI N. New point addition formulae for ECC applications [C]// Arithmetic of Finite Fields. Berlin, Heidelberg: Springer-Verlag, 2007: 189-201.
|
6 |
AGRAWAL R, YANG J, JAVAID H. Efficient FPGA-based ecdsa verification engine for permissioned blockchains [C]// Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. New York: Association for Computing Machinery, 2022: 50.
|
7 |
SAKAKIBARA Y, TOKUSASHI Y, MORISHIMA S, et al. Accelerating blockchain transfer system using FPGA-based NIC [C]// 2018 IEEE International Conference on Parallel and Distributed Processing with Applications, Ubiquitous Computing and Communications, Big Data and Cloud Computing, Social Computing and Networking, Sustainable Computing and Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). Melbourne: IEEE, 2018: 171-178.
|
8 |
JAVAID H, YANG J, SANTOSO N, et al. Blockchain machine: a network-attached hardware accelerator for hyperledger fabric [C]// 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). Bologna: IEEE, 2022: 258-268.
|
9 |
PHAM H L, TRAN T H, PHAN T D, et al Double SHA-256 hardware architecture with compact message expander for bitcoin mining[J]. IEEE Access, 2020, 8: 139634- 139646
doi: 10.1109/ACCESS.2020.3012581
|
10 |
TRAN T H, PHAM H L, PHAN T D, et al BCA: a 530-mW multicore blockchain accelerator for power-constrained devices in securing decentralized networks[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68 (10): 4245- 4258
doi: 10.1109/TCSI.2021.3102618
|
11 |
朱立, 俞欢, 詹士潇, 等 高性能联盟区块链技术研究[J]. 软件学报, 2019, 30 (6): 1577- 1593 ZHU Li, YU Huan, ZHAN Shi-xiao, et al Research on high-performance consortium blockchain technology[J]. Journal of Software, 2019, 30 (6): 1577- 1593
doi: 10.13328/j.cnki.jos.005737
|
12 |
MORISHIMA S, MATSUTANI H. Accelerating blockchain search of full nodes using GPUs [C]// 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). Cambridge: IEEE, 2018: 244-248.
|
13 |
ILIAKIS K, KOLIOGEORGI K, LITKE A, et al GPU accelerated blockchain over key-value database transactions[J]. IET Blockchain, 2022, 2 (1): 1- 12
doi: 10.1049/blc2.12011
|
14 |
MORISHIMA S. Scalable anomaly detection method for blockchain transactions using GPU [C]// 2019 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). Gold Coast: IEEE, 2019: 160-165.
|
15 |
PAN W, ZHENG F, ZHAO Y, et al An efficient elliptic curve cryptography signature server with GPU acceleration[J]. IEEE Transactions on Information Forensics and Security, 2017, 12 (1): 111- 122
doi: 10.1109/TIFS.2016.2603974
|
16 |
朱辉, 黄煜坤, 王枫为, 等 一种基于图形处理器的高吞吐量SM2数字签名计算方案[J]. 电子与信息学报, 2022, 44 (12): 4274- 4283 ZHU Hui, HUANG Yu-kun, WANG Feng-wei, et al A high throughput SM2 digital signature computing scheme over graphics processing unit platform[J]. Journal of Electronics and Information Technology, 2022, 44 (12): 4274- 4283
doi: 10.11999/JEIT211049
|
17 |
AL-ZUBAIDIE M, ZHANG Z, ZHANG J. Efficient and secure ECDSA algorithm and its applications: a survey [EB/OL]. [2022-10-01]. https://ijcnis.org/index.php/ijcnis/article/view/3827.
|
18 |
SEO H, KIM H, PARK T, et al Fixed-base comb with window-non-adjacent form (NAF) method for scalar multiplication[J]. Sensors, 2013, 13 (7): 9483- 9512
doi: 10.3390/s130709483
|
19 |
DRUCKER N, GUERON S Speeding-up P-256 ECDSA verification on x86-64 servers[J]. IEEE Letters of the Computer Society, 2019, 2 (2): 12- 15
doi: 10.1109/LOCS.2019.2911063
|
20 |
HANSER C, WAGNER C. Speeding up the fixed-base comb method for faster scalar multiplication on koblitz curves [M]// CUZZOCREA A, KITTL C, SIMOS D E, et al. Security engineering and intelligence informatics: Vol. 8128. Berlin, Heidelberg: Springer, 2013: 168-179.
|
21 |
MOHAMED N A F, HASHIM M H A, HUTTER M. Improved fixed-base comb method for fast scalar multiplication [M]// MITROKOTSA A, VAUDENAY S. Progress in cryptology - AFRICACRYPT 2012: Vol. 7374. Berlin, Heidelberg: Springer, 2012: 342-359.
|
22 |
ROBERT J M, NEGRE C, PLANTARD T Efficient fixed-base exponentiation and scalar multiplication based on a multiplicative splitting exponent recoding[J]. Journal of Cryptographic Engineering, 2019, 9 (2): 115- 136
doi: 10.1007/s13389-018-0196-7
|
23 |
CUDA C++ programming guide [EB/OL]. [2022-10-09]. https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.
|
24 |
HANKERSON D R, VANSTONE S A, MENEZES A J. Guide to elliptic curve cryptography [M]. New York: Springer, 2003.
|
25 |
CUDA C++ best practices guide [EB/OL]. [2022-10-09]. https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html.
|
26 |
RIVAIN M. Fast and regular algorithms for scalar multiplication over elliptic curves [J]. Cryptology ePrint Archive, 2011: 25.
|
27 |
BOS J W Low-latency elliptic curve scalar multiplication[J]. International Journal of Parallel Programming, 2012, 40 (5): 532- 550
doi: 10.1007/s10766-012-0198-5
|
28 |
CUI S, GROSSSCHÄDL J, LIU Z, et al. High-speed elliptic curve cryptography on the NVIDIA GT200 graphics processing unit [C]// Information Security Practice and Experience. Cham: Springer, 2014: 202-216.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|