计算机技术 |
|
|
|
|
轻量化YOLOv5s-OCG的轨枕裂纹检测算法 |
董超群1,2( ),汪战1,廖平1,谢帅1,2,荣玉杰1,周靖淞1 |
1. 重庆科技大学 机械与智能制造学院,重庆 401331 2. 重庆科技大学 石油天然气装备研究院,重庆 401331 |
|
Lightweight YOLOv5s-OCG rail sleeper crack detection algorithm |
Chaoqun DONG1,2( ),Zhan WANG1,Ping LIAO1,Shuai XIE1,2,Yujie RONG1,Jingsong ZHOU1 |
1. College of Mechanical and Intelligent Manufacturing, Chongqing University of Science and Technology, Chongqing 401331, China 2. Oil and Gas Equipment Research Institute, Chongqing University of Science and Technology, Chongqing 401331, China |
引用本文:
董超群,汪战,廖平,谢帅,荣玉杰,周靖淞. 轻量化YOLOv5s-OCG的轨枕裂纹检测算法[J]. 浙江大学学报(工学版), 2025, 59(9): 1838-1845.
Chaoqun DONG,Zhan WANG,Ping LIAO,Shuai XIE,Yujie RONG,Jingsong ZHOU. Lightweight YOLOv5s-OCG rail sleeper crack detection algorithm. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1838-1845.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.007
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1838
|
1 |
李修文, 曾承志, 杨荣华, 等 轨道故障引发的轮轨冲击特征研究[J]. 城市轨道交通研究, 2022, 25 (1): 122- 126 LI Xiuwen, ZENG Chengzhi, YANG Ronghua, et al Research on the characteristics of wheel rail impact caused by rail fault[J]. Urban Mass Transit, 2022, 25 (1): 122- 126
|
2 |
侯学良, 单腾飞, 薛靖国 深度学习的目标检测典型算法及其应用现状分析[J]. 国外电子测量技术, 2022, 41 (6): 165- 174 HOU Xueliang, SHAN Tengfei, XUE Jingguo Analysis of typical target detection algorithm based on deep learning and its application status[J]. Foreign Electronic Measurement Technology, 2022, 41 (6): 165- 174
|
3 |
WANG Y, ZHANG K, WANG L, et al An improved YOLOv8 algorithm for rail surface defect detection[J]. IEEE Access, 2024, 12: 44984- 44997
doi: 10.1109/ACCESS.2024.3380009
|
4 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580–587.
|
5 |
REN S, HE K, GIRSHICK R, et al Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149
doi: 10.1109/TPAMI.2016.2577031
|
6 |
LIU W, DRAGOMIR A, DUMITRU E, et al. SSD: single shot multibox detector [C]// European Conference on Computer Vision. Cham: Springer, 2016: 21–37.
|
7 |
薛雅丽, 贺怡铭, 崔闪, 等 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报: 工学版, 2025, 59 (2): 261- 268 XUE Yali, HE Yiming, CUI Shan, et al Oriented ship detection algorithm in SAR image based on improved YOLOv5[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (2): 261- 268
|
8 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779–788.
|
9 |
李鑫, 李香蓉, 汪诚, 等 基于改进YOLOv5的航空发动机表面缺陷检测模型[J]. 激光与光电子学进展, 2023, 60 (16): 304- 313 LI Xin, LI Xiangrong, WANG Cheng, et al Aero-engine surface defect detection model based on improved YOLOv5[J]. Laser & Optoelectronics Progress, 2023, 60 (16): 304- 313
|
10 |
汪沛洁, 谌雨章, 王诗琦, 等 基于改进YOLOv5的鱼群小目标检测优化算法[J]. 湖北大学学报: 自然科学版, 2024, 46 (1): 14- 24 WANG Peijie, CHEN Yuzhang, WANG Shiqi, et al Optimization algorithm of fish shoal small target detection based on improved YOLOv5[J]. Journal of Hubei University: Natural Science, 2024, 46 (1): 14- 24
|
11 |
王宏志, 宋明轩, 程超, 等 基于改进 YOLOv5 算法的道路目标检测方法[J]. 吉林大学学报: 工学版, 2024, (9): 2658- 2667 WANG Hongzhi, SONG Mingxuan, CHENG Chao, et al Road object detection method based on improved YOLOv5 algorithm[J]. Journal of Jilin University: Engineering and Technology Edition, 2024, (9): 2658- 2667
|
12 |
令雅莉, 杨桂芹, 张又元, 等 基于改进算法YOLOv5+的混凝土轨枕裂纹检测[J]. 铁道标准设计, 2024, 68 (4): 70- 77 LING Yali, YANG Guiqin, ZHANG Youyuan, et al Crack detection of concrete sleeper based on improved algorithm YOLOv5+[J]. Railway Standard Design, 2024, 68 (4): 70- 77
|
13 |
王琳毅, 白静, 李文静, 等 YOLO系列目标检测算法研究进展[J]. 计算机工程与应用, 2023, 59 (14): 15- 29 WANG Linyi, BAI Jing, LI Wenjing, et al Research progress of YOLO series target detection algorithms[J]. Computer Engineering and Applications, 2023, 59 (14): 15- 29
doi: 10.3778/j.issn.1002-8331.2301-0081
|
14 |
GUO S, LI L, GUO T, et al Research on mask-wearing detection algorithm based on improved YOLOv5[J]. Sensors, 2022, 22 (13): 4933
doi: 10.3390/s22134933
|
15 |
LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution [C]// International Conference on Learning Representations. Appleton: [s.n.], 2022(1181): 1–20.
|
16 |
YANG B, BENDER G, LE Q V, et al. Condconv: conditionally parameterized convolutions for efficient inference [J]. Advances in Neural Information Processing Systems, 2019, 32.
|
17 |
CHEN Y, DAI X, LIU M, et al. Dynamic convolution: attention over convolution kernels [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11030–11039.
|
18 |
LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020s [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966–11976.
|
19 |
LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows [C]// IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992–10002.
|
20 |
刘欢, 李云红, 张蕾涛, 等 基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别[J]. 浙江大学学报: 工学版, 2024, 58 (9): 1757- 1767,1780 LIU Huan, LI Yunhong, ZHANG Leitao, et al Identification of apple leaf diseases based on MA-ConvNext network and stepwise relational knowledge distillation[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (9): 1757- 1767,1780
|
21 |
朱宏禹, 韩建宁, 徐勇 基于改进型YOLOv5s的印刷线路板瑕疵检测[J]. 国外电子测量技术, 2023, 42 (3): 152- 159 ZHU Hongyu, HAN Jianning, XU Yong Printed circuit board blemishes detection based on the improved YOLOv5s[J]. Foreign Electronic Measurement Technology, 2023, 42 (3): 152- 159
|
22 |
TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778–10787.
|
23 |
ZHAO C, SHU X, YAN X, et al RDD-YOLO: a modified YOLO for detection of steel surface defects[J]. Measurement, 2023, 214: 112776
doi: 10.1016/j.measurement.2023.112776
|
24 |
曹建斌. 基于深度学习的高速铁路混凝土轨枕裂纹检测[D]. 上海: 上海大学, 2020. CAO Jianbin. Crack detection of railway concrete sleeper based on deep learning [D]. Shanghai: Shanghai University, 2020.
|
25 |
李飞, 胡坤, 张勇, 等 基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测[J]. 浙江大学学报: 工学版, 2022, 56 (11): 2156- 2167 LI Fei, HU Kun, ZHANG Yong, et al Multi-dimensional detection of longitudinal tearing of conveyor belt based on YOLOv4 of hybrid domain attention[J]. Journal of Zhejiang Universit: Engineering Science, 2022, 56 (11): 2156- 2167
|
26 |
王安静, 袁巨龙, 朱勇建, 等 基于改进YOLOv8s的鼓形滚子表面缺陷检测算法[J]. 浙江大学学报: 工学版, 2024, 58 (2): 370- 380 WANG Anjing, YUAN Julong, ZHU Yongjian, et al Drum roller surface defect detection algorithm based on improved YOLOv8s[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (2): 370- 380
|
27 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577–1586.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|