计算机技术 |
|
|
|
|
基于变分模型和Transformer的多尺度并行磁共振成像重建 |
段继忠( ),李海源 |
昆明理工大学 信息工程与自动化学院,云南 昆明 650504 |
|
Multi-scale parallel magnetic resonance imaging reconstruction based on variational model and Transformer |
Jizhong DUAN( ),Haiyuan LI |
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China |
1 |
PRUESSMANN K P Encoding and reconstruction in parallel MRI[J]. NMR in Biomedicine, 2006, 19 (3): 288- 299
doi: 10.1002/nbm.1042
|
2 |
LARKMAN D J, NUNES R G Parallel magnetic resonance imaging[J]. Physics in Medicine and Biology, 2007, 52 (7): R15
doi: 10.1088/0031-9155/52/7/R01
|
3 |
LUSTIG M, PAULY J M SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magnetic Resonance in Medicine, 2010, 64 (2): 457- 471
doi: 10.1002/mrm.22428
|
4 |
DONOHO D L Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289- 1306
doi: 10.1109/TIT.2006.871582
|
5 |
LUSTIG M, DONOHO D, PAULY J M Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58 (6): 1182- 1195
doi: 10.1002/mrm.21391
|
6 |
PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al SENSE: sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42 (5): 952- 962
doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
|
7 |
UECKER M, LAI P, MURPHY M J, et al ESPIRiT: an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magnetic Resonance in Medicine, 2014, 71 (3): 990- 1001
doi: 10.1002/mrm.24751
|
8 |
LUSTIG M, DONOHO D L, SANTOS J M, et al Compressed sensing MRI[J]. IEEE Signal Processing Magazine, 2008, 25 (2): 72- 82
doi: 10.1109/MSP.2007.914728
|
9 |
RUDIN L I, OSHER S, FATEMI E Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60 (1/2/3/4): 259- 268
|
10 |
RAVISHANKAR S, BRESLER Y. Sparsifying transform learning for compressed sensing MRI [C]// IEEE 10th International Symposium on Biomedical Imaging. San Francisco: IEEE, 2013: 17–20.
|
11 |
ZHANG K, ZUO W, CHEN Y, et al Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26 (7): 3142- 3155
doi: 10.1109/TIP.2017.2662206
|
12 |
LIU G, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions [C]// European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 89–105.
|
13 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132–1140.
|
14 |
WU Z, LIAO W, YAN C, et al Deep learning based MRI reconstruction with transformer[J]. Computer Methods and Programs in Biomedicine, 2023, 233: 107452
doi: 10.1016/j.cmpb.2023.107452
|
15 |
HAMMERNIK K, KLATZER T, KOBLER E, et al Learning a variational network for reconstruction of accelerated MRI data[J]. Magnetic Resonance in Medicine, 2018, 79 (6): 3055- 3071
doi: 10.1002/mrm.26977
|
16 |
SRIRAM A, ZBONTAR J, MURRELL T, et al. End-to-end variational networks for accelerated MRI reconstruction [C]// Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2020: 64–73.
|
17 |
YIASEMIS G, SONKE J J, SÁNCHEZ C, et al. Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction [C] // IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 722–731.
|
18 |
GUO P, MEI Y, ZHOU J, et al ReconFormer: accelerated MRI reconstruction using recurrent transformer[J]. IEEE Transactions on Medical Imaging, 2024, 43 (1): 582- 593
doi: 10.1109/TMI.2023.3314747
|
19 |
HUANG J, XING X, GAO Z, et al. Swin deformable attention U-Net transformer (SDAUT) for explainable fast MRI [C]// Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2022: 538–548.
|
20 |
HUANG J, FANG Y, WU Y, et al Swin transformer for fast MRI[J]. Neurocomputing, 2024, 493: 281- 304
|
21 |
WANG B, LIAN Y, XIONG X, et al DCT-net: dual-domain cross-fusion transformer network for MRI reconstruction[J]. Magnetic Resonance Imaging, 2024, 107: 69- 79
doi: 10.1016/j.mri.2024.01.007
|
22 |
LIU X, XU W, YE X. The ill-posed problem and regularization in parallel magnetic resonance imaging [C]// 3rd International Conference on Bioinformatics and Biomedical Engineering. Beijing: IEEE, 2009: 1–4.
|
23 |
ROEMER P B, EDELSTEIN W A, HAYES C E, et al The NMR phased array[J]. Magnetic Resonance in Medicine, 1990, 16 (2): 192- 225
doi: 10.1002/mrm.1910160203
|
24 |
LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using swin transformer [C]// International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833–1844.
|
25 |
FABIAN Z, TINAZ B, SOLTANOLKOTABI M. HUMUS-Net: hybrid unrolled multi-scale network architecture for accelerated MRI reconstruction [EB/OL]. (2023-03-17)[2024-08-01]. https://arxiv.org/abs/2203.08213.
|
26 |
LAI Z, QU X, LIU Y, et al Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform[J]. Medical Image Analysis, 2016, 27: 93- 104
doi: 10.1016/j.media.2015.05.012
|
27 |
KNOLL F, ZBONTAR J, SRIRAM A, et al fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning[J]. Radiology Artificial Intelligence, 2020, 2 (1): e190007
doi: 10.1148/ryai.2020190007
|
28 |
PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library [EB/OL]. (2019-12-03)[2024-08-01]. https://arxiv.org/abs/1912.01703.
|
29 |
HORÉ A, ZIOU D. Image quality metrics: psnr vs. SSIM [C]// 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 2366–2369.
|
30 |
WANG Z, BOVIK A C, SHEIKH H R, et al Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13 (4): 600- 612
doi: 10.1109/TIP.2003.819861
|
31 |
PRAMANIK A, AGGARWAL H K, JACOB M Deep generalization of structured low-rank algorithms (deep-SLR)[J]. IEEE Transactions on Medical Imaging, 2020, 39 (12): 4186- 4197
doi: 10.1109/TMI.2020.3014581
|
32 |
WANG S, CHENG H, YING L, et al Deep complexMRI: exploiting deep residual network for fast parallel MR imaging with complex convolution[J]. Magnetic Resonance Imaging, 2020, 68: 136- 147
doi: 10.1016/j.mri.2020.02.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|