计算机技术与控制工程 |
|
|
|
|
基于加速扩散模型的缺失值插补算法 |
王圣举( ),张赞*( ) |
长安大学 电子与控制工程学院,陕西 西安,710064 |
|
Missing value imputation algorithm based on accelerated diffusion model |
Shengju WANG( ),Zan ZHANG*( ) |
School of Electronics and Control Engineering, Chang’an University, Xi’an 710064, China |
1 |
VAN BUUREN S. Flexible imputation of missing data [M]. [S. l. ]: CRC Press, 2018.
|
2 |
STEKHOVEN D J, BÜHLMANN P MissForest: non-parametric missing value imputation for mixed-type data[J]. Bioinformatics, 2012, 28 (1): 112- 118
doi: 10.1093/bioinformatics/btr597
|
3 |
RESCHE-RIGON M, WHITE I R Multiple imputation by chained equations for systematically and sporadically missing multilevel data[J]. Statistical Methods in Medical Research, 2018, 27 (6): 1634- 1649
doi: 10.1177/0962280216666564
|
4 |
MAZUMDER R, HASTIE T, TIBSHIRANI R Spectral regularization algorithms for learning large incomplete matrices[J]. Journal of Machine Learning Research, 2010, 11: 2287- 2322
|
5 |
YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets [C]// Proceedings of the 35th International Conference on Machine Learning. Stockholm: ACM, 2018: 5689–5698.
|
6 |
MATTEI P A, FRELLSEN J. MIWAE: deep generative modelling and imputation of incomplete data sets [C]// Proceedings of the 36th International Conference on Machine Learning. Long Beach: ACM, 2019: 4413–4423.
|
7 |
ZHENG S, CHAROENPHAKDEE N. Diffusion models for missing value imputation in tabular data [EB/OL]. (2023–03–11)[2023–07–12]. https://arxiv.org/pdf/2210.17128.
|
8 |
LIU L, REN Y, LIN Z, et al. Pseudo numerical methods for diffusion models on manifolds [EB/OL]. (2022–10–31)[2023–08–19]. https://arxiv.org/pdf/2202.09778.
|
9 |
MCKNIGHT P E, MCKNIGHT K M, SIDANI S, et al. Missing data: a gentle introduction [M]. [S. l. ]: Guilford Press, 2007.
|
10 |
MALARVIZHI R, THANAMANI A S K-nearest neighbor in missing data imputation[J]. International Journal of Engineering Research and Development, 2012, 5 (1): 5- 7
|
11 |
庞新生 缺失数据插补处理方法的比较研究[J]. 统计与决策, 2012, 28 (24): 18- 22 PANG Xinsheng A comparative study on missing data interpolation methods[J]. Statistics and Decision, 2012, 28 (24): 18- 22
|
12 |
HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. [S. l. ]: Curran Associates Inc. , 2020: 6840–6851.
|
13 |
SONG J M, MENG C L, ERMON S. Denoising diffusion implicit models [EB/OL]. (2022–10–05)[2023–08–23]. https://arxiv.org/pdf/2010.02502.
|
14 |
SONG Y, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations [EB/OL]. (2021–02–10)[2023–08–25]. https://arxiv.org/pdf/2011.13456.
|
15 |
MAOUTSA D, REICH S, OPPER M Interacting particle solutions of Fokker–Planck equations through gradient–log–density estimation[J]. Entropy, 2020, 22 (8): 802
doi: 10.3390/e22080802
|
16 |
SALIMANS T, HO J. Progressive distillation for fast sampling of diffusion models [EB/OL]. (2022–06–07)[2024–01–23]. https://arxiv.org/pdf/2202.00512.
|
17 |
TASHIRO Y, SONG J, SONG Y, et al. CSDI: conditional score-based diffusion models for probabilistic time series imputation [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S.l.]: Curran Associates Inc. , 2021: 24804–24816.
|
18 |
NICHOL A. Q, DHARIWAL P. Improved denoising diffusion probabilistic models [C]// Proceedings of the 38th International Conference on Machine Learning. Vienna: ACM, 2021: 8162–8171.
|
19 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Medical Image Computing and Computer-Assisted Intervention. [S. l. ]: Springer, 2015: 234–241.
|
20 |
DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S. l.]: Curran Associates Inc. , 2021: 8780–8794.
|
21 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. [S. l.]: Curran Associates Inc. , 2017: 6000–6010.
|
22 |
GARCÍA-LAENCINA P J, SANCHO-GÓMEZ J L, FIGUEIRAS-VIDAL A R Pattern classification with missing data: a review[J]. Neural Computing and Applications, 2010, 19 (2): 263- 282
doi: 10.1007/s00521-009-0295-6
|
23 |
GORISHNIY Y, RUBACHEV I, KHRULKOV V, et al. Revisiting deep learning models for tabular data [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S. l. ]: Curran Associates Inc., 2021: 18932–18943.
|
24 |
JARRETT D, CEBERE B C, LIU T, et al. Hyperimpute: Generalized iterative imputation with automatic model selection [C]// Proceedings of the 39th International Conference on Machine Learning. Baltimore: ACM, 2022: 9916–9937.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|