Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1211-1218    DOI: 10.3785/j.issn.1008-973X.2025.06.012
计算机技术     
面向目的地预测的层次化空间嵌入BiGRU模型
周翔宇1,2(),刘毅志1,2,*(),赵肄江1,2,廖祝华1,2,张德城1,2
1. 湖南科技大学 计算机科学与工程学院,湖南 湘潭 411201
2. 湖南科技大学 服务计算与软件服务新技术湖南省重点实验室,湖南 湘潭 411201
Hierarchical spatial embedding BiGRU model for destination prediction
Xiangyu ZHOU1,2(),Yizhi LIU1,2,*(),Yijiang ZHAO1,2,Zhuhua LIAO1,2,Decheng ZHANG1,2
1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
2. Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China
 全文: PDF(1131 KB)   HTML
摘要:

结合空间嵌入和神经网络目的地的预测方法在预测精度和时间性能之间存在权衡,并且面临长期依赖的问题. 为此,提出面向目的地预测的层次化空间嵌入双向门控循环单元 (HSE-BiGRU) 模型. 该模型采用层次化架构:第1层通过粗粒度网格嵌入技术,将GPS轨迹数据转换为网格嵌入序列,利用带注意力的BiGRU网络捕获网格嵌入序列中的时空依赖关系,预测目的地所在的网格区域;第2层采用四叉树嵌入技术将网格区域内的轨迹数据转换为四叉树嵌入序列,运用带注意力的BiGRU网络聚焦关键位置节点以提取四叉树嵌入序列的运动特征;结合2层提取的特征信息精准预测目的地. 使用波尔图市的出租车数据集进行性能评估,结果表明,所提方法在预测精度和时间性能上均优于CNN、T-CONV、CNN-LSTM等基线模型.

关键词: 目的地预测层次化架构网格嵌入四叉树嵌入双向门控循环单元(BiGRU)注意力机制    
Abstract:

At present, most destination prediction methods that combine spatial embedding and neural networks faced the trade-off between prediction accuracy and time performance, as well as the long-term dependence problem. Therefore, a hierarchical spatial embedding bidirectional gate recurrent unit (HSE-BiGRU) model for destination prediction was proposed. The proposed HSE-BiGRU model adopted a hierarchical architecture consisting of two stages. In the first stage, a coarse-grained grid embedding technique was employed to convert the GPS trajectory data into a grid embedding sequence. An attention-equipped BiGRU network was used to capture the spatiotemporal dependencies within the sequence and predict the destination’s grid region. In the second stage, a quadtree embedding technique was utilized to transform the trajectory data within the predicted grid region into a quadtree embedding sequence. Subsequently, the attention-equipped BiGRU network was applied to focus on critical location nodes within the quadtree embedding sequence, thereby extracting its motion characteristics. Finally, the destination was accurately predicted by integrating the features extracted from both stages. The performance of the proposed method was evaluated on the taxi dataset in Porto, and the experimental results showed that the proposed method was superior to the baseline models, for example CNN, T-CONV, and CNN-LSTM, in terms of prediction accuracy and time performance.

Key words: destination prediction    hierarchical architecture    grid embedding    quadtree embedding    bidirectional gate recurrent unit (BiGRU)    attention mechanism
收稿日期: 2024-06-05 出版日期: 2025-05-30
CLC:  TP 393  
基金资助: 2024年教育部人文社会科学研究规划基金资助项目(24YJAZH237);2023年湖南省重点研发计划资助项目(2023sk2081);湖南省自然科学基金资助项目(2024JJ5163) ;湖南省教育厅科学研究重点资助项目(22A0341).
通讯作者: 刘毅志     E-mail: z_xy24@sina.cn;yizhi_liu@sina.cn
作者简介: 周翔宇(1999—),男,硕士生,从事轨迹数据挖掘研究. orcid.org/0009-0009-5658-5734. E-mail:z_xy24@sina.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
周翔宇
刘毅志
赵肄江
廖祝华
张德城

引用本文:

周翔宇,刘毅志,赵肄江,廖祝华,张德城. 面向目的地预测的层次化空间嵌入BiGRU模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1211-1218.

Xiangyu ZHOU,Yizhi LIU,Yijiang ZHAO,Zhuhua LIAO,Decheng ZHANG. Hierarchical spatial embedding BiGRU model for destination prediction. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1211-1218.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.012        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1211

图 1  层次化空间嵌入工作原理
图 2  HSE-BiGRU架构
图 3  BiGRU工作示意图
图 4  注意力机制工作机理
图 5  基于四叉树结构的空间嵌入
p/%A/%MAE/mRT/ms
k=1k=2k=3k=4k=5
3023.933.240.346.450.52364.32.15
5040.353.161.767.470.61301.02.22
7054.667.876.581.685.2754.92.33
9071.486.291.894.395.4486.72.43
表 1  不同轨迹完成度下的模型性能比较
网格划分参数A/%MAE/mRT/ms
k=1k=2k=3k=4k=5
$q_1$=1,$q_2$=655.168.876.882.385.4740.82.76
$q_1$=2,$q_2$=554.667.876.581.685.2754.92.33
$q_1$=3,$q_2$=443.359.170.176.180.6987.12.11
表 2  网格划分参数设置比较
消融模型A/%MAE/mRT/ms
k=1k=2k=3k=4k=5
网格嵌入34.751.563.871.477.51094.41.42
四叉树嵌入56.169.478.182.685.7718.82.89
HSE-BiGRU54.667.876.581.685.2754.92.33
表 3  空间嵌入方法消融实验
对比模型A/%MAE/mRT/ms
k=1k=2k=3k=4k=5
CNN31.147.458.164.871.41483.30.96
T-CONV35.750.561.268.875.51276.12.57
CNN-LSTM41.358.169.375.580.11065.72.89
BiLSTM+Attention52.966.875.280.184.1796.35.52
SATN-LSTM46.660.771.979.182.1870.84.21
HSE-BiGRU54.667.876.581.685.2754.92.33
表 4  对比模型性能比较
1 WU X, ZHU W, LIU Z, et al A novel vehicle destination prediction model with expandable features using attention mechanism and variational autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (9): 16548- 16557
2 余丹青, 邬群勇, 姚江涛, 等 融合卷积、注意力和MLP的出租车目的地预测[J]. 计算机工程与应用, 2023, 59 (11): 302- 311
YU Danqing, WU Qunyong, YAO Jiangtao, et al Taxi destination prediction based on convolution, attention and multilayer perceptron[J]. Computer Engineering and Applications, 2023, 59 (11): 302- 311
doi: 10.3778/j.issn.1002-8331.2203-0168
3 江婧, 张怀峰, 皮德常 基于卷积神经网络的移动对象目的地预测[J]. 小型微型计算机系统, 2019, 40 (12): 2519- 2525
JIANG Jing, ZHANG Huaifeng, PI Dechang Destination prediction of moving objects based on convolutional neural networks[J]. Journal of Chinese Computer Systems, 2019, 40 (12): 2519- 2525
doi: 10.3969/j.issn.1000-1220.2019.12.009
4 LV J, SUN Q, LI Q, et al Multi-scale and multi-scope convolutional neural networks for destination prediction of trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (8): 3184- 3195
5 李冰荣, 皮德常, 候梦如 基于CNN和LSTM的移动对象目的地预测[J]. 计算机科学, 2021, 48 (4): 70- 77
LI Bingrong, PI Dechang, HOU Mengru Destination prediction of moving objects based on convolutional neural networks and long-short term memory[J]. Computer Science, 2021, 48 (4): 70- 77
doi: 10.11896/jsjkx.200200024
6 崔淑敏, 张磊, 李允, 等 出租车目的地预测的深度学习方法[J]. 计算机工程与科学, 2020, 42 (1): 185- 190
CUI Shumin, ZHANG Lei, LI Yun, et al A deep learning method for taxi destination prediction[J]. Computer Engineering and Science, 2020, 42 (1): 185- 190
doi: 10.3969/j.issn.1007-130X.2020.01.024
7 SONG D, LI Y, ZHANG M, et al. Taxi destination prediction based on LSTM with tree memory module [C]// 5th International Conference on Computer Information Science and Artificial Intelligence. Chongqing: SPIE, 2023, 12566: 135–140.
8 LIAO C, CHEN C, XIANG C, et al Taxi-passenger’s destination prediction via GPS embedding and attention-based BiLSTM model[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (5): 4460- 4473
9 晋广印, 赵旭俊, 龚艺璇 基于长短期记忆网络的移动轨迹目的地预测[J]. 计算机工程与科学, 2024, 46 (3): 525- 534
JIN Guangyin, ZHAO Xujun, GONG Yixuan Moving trajectory destination prediction based on long short-term memory network[J]. Computer Engineering and Science, 2024, 46 (3): 525- 534
doi: 10.3969/j.issn.1007-130X.2024.03.015
10 SPERBER M. Quadtree and Octree [M]// SHEKHAR S, XIONG H, ZHOU X. Encyclopedia of GIS. Cham: Springer, 2017: 1695–1700.
[1] 蔡永青,韩成,权巍,陈兀迪. 基于注意力机制的视觉诱导晕动症评估模型[J]. 浙江大学学报(工学版), 2025, 59(6): 1110-1118.
[2] 鞠文博,董华军. 基于上下文信息融合与动态采样的主板缺陷检测方法[J]. 浙江大学学报(工学版), 2025, 59(6): 1159-1168.
[3] 李宗民,徐畅,白云,鲜世洋,戎光彩. 面向点云理解的双邻域图卷积方法[J]. 浙江大学学报(工学版), 2025, 59(5): 879-889.
[4] 刘洪伟,王磊,刘阳,张鹏超,乔石. 基于重组二次分解及LSTNet-Atten的短期负荷预测[J]. 浙江大学学报(工学版), 2025, 59(5): 1051-1062.
[5] 刘登峰,郭文静,陈世海. 基于内容引导注意力的车道线检测网络[J]. 浙江大学学报(工学版), 2025, 59(3): 451-459.
[6] 姚明辉,王悦燕,吴启亮,牛燕,王聪. 基于小样本人体运动行为识别的孪生网络算法[J]. 浙江大学学报(工学版), 2025, 59(3): 504-511.
[7] 尹向雷,屈少鹏,解永芳,苏妮. 基于渐进特征融合及多尺度空洞注意力的遮挡鸟巢检测[J]. 浙江大学学报(工学版), 2025, 59(3): 535-545.
[8] 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法[J]. 浙江大学学报(工学版), 2025, 59(2): 261-268.
[9] 杨冰,徐楚阳,姚金良,向学勤. 基于单目RGB图像的三维手部姿态估计方法[J]. 浙江大学学报(工学版), 2025, 59(1): 18-26.
[10] 李灿林,王新玥,马利庄,邵志文,张文娇. 融合注意力机制和结构线提取的图像卡通化[J]. 浙江大学学报(工学版), 2024, 58(8): 1728-1737.
[11] 李忠良,陈麒,石琳,杨朝,邹先明. 时间感知组合的动态知识图谱补全[J]. 浙江大学学报(工学版), 2024, 58(8): 1738-1747.
[12] 吴书晗,王丹,陈远方,贾子钰,张越棋,许萌. 融合注意力的滤波器组双视图图卷积运动想象脑电分类[J]. 浙江大学学报(工学版), 2024, 58(7): 1326-1335.
[13] 马现伟,范朝辉,聂为之,李东,朱逸群. 对失效传感器具备鲁棒性的故障诊断方法[J]. 浙江大学学报(工学版), 2024, 58(7): 1488-1497.
[14] 杨军,张琛. 基于边界点估计与稀疏卷积神经网络的三维点云语义分割[J]. 浙江大学学报(工学版), 2024, 58(6): 1121-1132.
[15] 李运堂,李恒杰,张坤,王斌锐,关山越,陈源. 基于新型编码解码网络的复杂输电线识别[J]. 浙江大学学报(工学版), 2024, 58(6): 1133-1141.