计算机技术与控制工程 |
|
|
|
|
用于无人机遥感图像的高精度实时语义分割网络 |
魏新雨1( ),饶蕾1,*( ),范光宇1,陈年生1,程松林1,杨定裕2 |
1. 上海电机学院 电子信息学院,上海 201306 2. 浙江大学 区块链与数据安全全国重点实验室,浙江 杭州 310058 |
|
High-precision real-time semantic segmentation network for UAV remote sensing images |
Xinyu WEI1( ),Lei RAO1,*( ),Guangyu FAN1,Niansheng CHEN1,Songlin CHENG1,Dingyu YANG2 |
1. School of Electronic Information Engineering, Shanghai Dianji University, Shanghai 201306, China 2. State Key Laboratory of Blockchain and Data Security, Zhejiang University, Hangzhou 310058, China |
引用本文:
魏新雨,饶蕾,范光宇,陈年生,程松林,杨定裕. 用于无人机遥感图像的高精度实时语义分割网络[J]. 浙江大学学报(工学版), 2025, 59(7): 1411-1420.
Xinyu WEI,Lei RAO,Guangyu FAN,Niansheng CHEN,Songlin CHENG,Dingyu YANG. High-precision real-time semantic segmentation network for UAV remote sensing images. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1411-1420.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.009
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1411
|
1 |
LI R, ZHENG S, DUAN C, et al Land cover classification from remote sensing images based on multi-scale fully convolutional network[J]. Geo-spatial Information Science, 2022, 25 (2): 278- 294
doi: 10.1080/10095020.2021.2017237
|
2 |
SHI W, ZHANG M, KE H, et al Landslide recognition by deep convolutional neural network and change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (6): 4654- 4672
doi: 10.1109/TGRS.2020.3015826
|
3 |
GRIFFITHS D, BOEHM J Improving public data for building segmentation from convolutional neural networks (CNNs) for fused airborne lidar and image data using active contours[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 70- 83
doi: 10.1016/j.isprsjprs.2019.05.013
|
4 |
刘毅, 陈一丹, 高琳, 等 基于多尺度特征融合的轻量化道路提取模型[J]. 浙江大学学报: 工学版, 2024, 58 (5): 951- 959 LIU Yi, CHEN Yidan, GAO Lin, et al Lightweight road extraction model based on multi-scale feature fusion[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (5): 951- 959
|
5 |
ZHU X X, TUIA D, MOU L, et al Deep learning in remote sensing: a comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5 (4): 8- 36
doi: 10.1109/MGRS.2017.2762307
|
6 |
吴泽康, 赵姗, 李宏伟, 等 遥感图像语义分割空间全局上下文信息网络[J]. 浙江大学学报: 工学版, 2022, 56 (4): 795- 802 WU Zekang, ZHAO Shan, LI Hongwei, et al Spatial global context information network for semantic segmentation of remote sensing image[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (4): 795- 802
|
7 |
LECUN Y, BENGIO Y, HINTON G Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
doi: 10.1038/nature14539
|
8 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431–3440.
|
9 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230–6239.
|
10 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848
doi: 10.1109/TPAMI.2017.2699184
|
11 |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 833–851.
|
12 |
SHI X, HUANG H, PU C, et al CSA-UNet: channel-spatial attention-based encoder–decoder network for rural blue-roofed building extraction from UAV imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6514405
|
13 |
XU R, WANG C, ZHANG J, et al RSSFormer: foreground saliency enhancement for remote sensing land-cover segmentation[J]. IEEE Transactions on Image Processing, 2023, 32: 1052- 1064
doi: 10.1109/TIP.2023.3238648
|
14 |
YU C, WANG J, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 334–349.
|
15 |
YU C, GAO C, WANG J, et al BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129 (11): 3051- 3068
doi: 10.1007/s11263-021-01515-2
|
16 |
WANG L, LI R, ZHANG C, et al UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196- 214
doi: 10.1016/j.isprsjprs.2022.06.008
|
17 |
WADEKAR S N, CHAURASIA A. MobileViTv3: mobile-friendly vision transformer with simple and effective fusion of local, global and input features [EB/OL]. (2022–10–06) [2024–08–31]. https://arxiv.org/abs/2209.15159.
|
18 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
19 |
LYU Y, VOSSELMAN G, XIA G S, et al UAVid: a semantic segmentation dataset for UAV imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 165: 108- 119
doi: 10.1016/j.isprsjprs.2020.05.009
|
20 |
WANG J, ZHENG Z, MA A, et al. LoveDA: a remote sensing land-cover dataset for domain adaptive semantic segmentation [EB/OL]. (2021–10–17)[2024–08–31]. https://arxiv.org/abs/2110.08733.
|
21 |
LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection [C]// Computer Vision – ECCV 2018. [S.l.]: Springer, 2018: 404–419.
|
22 |
WANG L, LI R, WANG D, et al Transformer meets convolution: a bilateral awareness network for semantic segmentation of very fine resolution urban scene images[J]. Remote Sensing, 2021, 13 (16): 3065
doi: 10.3390/rs13163065
|
23 |
XU W, XU Y, CHANG T, et al. Co-scale conv-attentional image transformers [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9961–9970.
|
24 |
STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter: transformer for semantic segmentation [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7242–7252.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|