计算机技术与控制工程 |
|
|
|
|
面向风格扩散的共享特征学习算法 |
申锦琛3( ),黄蕊3,蒋澈3,戚萌2,崔嘉1,3,*( ) |
1. 华南理工大学 亚热带建筑与城市科学全国重点实验室,广东 广州 510641 2. 山东师范大学 信息科学与工程学院,山东 济南 250358 3. 华南理工大学 设计学院,广东 广州 510006 |
|
Shared feature learning algorithm for style diffusion |
Jinchen SHEN3( ),Rui HUANG3,Che JIANG3,Meng QI2,Jia CUI1,3,*( ) |
1. State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou 510641, China 2. School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China 3. School of Design, South China University of Technology, Guangzhou 510006, China |
引用本文:
申锦琛,黄蕊,蒋澈,戚萌,崔嘉. 面向风格扩散的共享特征学习算法[J]. 浙江大学学报(工学版), 2025, 59(7): 1403-1410.
Jinchen SHEN,Rui HUANG,Che JIANG,Meng QI,Jia CUI. Shared feature learning algorithm for style diffusion. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1403-1410.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.008
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1403
|
1 |
WANG B, ZHANG S, ZHANG J, et al Architectural style classification based on CNN and channel–spatial attention[J]. Signal, Image and Video Processing, 2023, 17 (1): 99- 107
doi: 10.1007/s11760-022-02208-0
|
2 |
FU R, LI J, YANG C, et al Image colour application rules of Shanghai style Chinese paintings based on machine learning algorithm[J]. Engineering Applications of Artificial Intelligence, 2024, 132: 107903
doi: 10.1016/j.engappai.2024.107903
|
3 |
ZHAO R, LIU K. Research on painting image classification based on convolution neural network [C]// Proceedings of the Third International Conference on Artificial Intelligence and Computer Engineering. Wuhan: SPIE, 2023: 225.
|
4 |
JIANG S, SHAO M, JIA C, et al Learning consensus representation for weak style classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (12): 2906- 2919
doi: 10.1109/TPAMI.2017.2771766
|
5 |
SHAJINI M, RAMANAN A A knowledge-sharing semi-supervised approach for fashion clothes classification and attribute prediction[J]. The Visual Computer, 2022, 38 (11): 3551- 3561
doi: 10.1007/s00371-021-02178-3
|
6 |
ZHANG H, LUO Y, ZHANG L, et al Considering three elements of aesthetics: multi-task self-supervised feature learning for image style classification[J]. Neurocomputing, 2023, 520: 262- 273
doi: 10.1016/j.neucom.2022.10.076
|
7 |
ZHAO W, ZHOU D, QIU X, et al How to represent paintings: a painting classification using artistic comments[J]. Sensors, 2021, 21 (6): 1940
doi: 10.3390/s21061940
|
8 |
CASTELLANO G, LELLA E, VESSIO G Visual link retrieval and knowledge discovery in painting datasets[J]. Multimedia Tools and Applications, 2021, 80 (5): 6599- 6616
doi: 10.1007/s11042-020-09995-z
|
9 |
EFTHYMIOU A, RUDINAC S, KACKOVIC M, et al. Graph neural networks for knowledge enhanced visual representation of paintings [EB/OL]. (2021–05–17)[2024–06–09]. https://arxiv.org/pdf/2105.08190.
|
10 |
STERMAN S, HUANG E, LIU V, et al. Interacting with literary style through computational tools [C]// Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Honolulu: ACM, 2020: 1–12.
|
11 |
MITCHELL V W, HARVEY W S, WOOD G Where does all the ‘know how’ go? The role of tacit knowledge in research impact[J]. Higher Education Research and Development, 2022, 41 (5): 1664- 1678
doi: 10.1080/07294360.2021.1937066
|
12 |
CUI J, LIU Y Q, LU H J, et al PortraitNET: photo-realistic portrait cartoon style transfer with self-supervised semantic supervision[J]. Neurocomputing, 2021, 465: 114- 127
doi: 10.1016/j.neucom.2021.08.088
|
13 |
SUN M, ZHANG D, WANG Z, et al Monte Carlo Convex Hull Model for classification of traditional Chinese paintings[J]. Neurocomputing, 2016, 171: 788- 797
doi: 10.1016/j.neucom.2015.08.013
|
14 |
GENG J, ZHANG X, YAN Y, et al MCCFNet: multi-channel color fusion network for cognitive classification of traditional Chinese paintings[J]. Cognitive Computation, 2023, 15 (6): 2050- 2061
doi: 10.1007/s12559-023-10172-1
|
15 |
LIU S, YANG J, AGAIAN S S, et al Novel features for art movement classification of portrait paintings[J]. Image and Vision Computing, 2021, 108: 104121
doi: 10.1016/j.imavis.2021.104121
|
16 |
WANG Z, SUN M, HAN Y, et al Supervised heterogeneous sparse feature selection for Chinese paintings classification[J]. Journal of Computer-Aided Design and Computer Graphics, 2013, 25 (12): 1848- 1855
|
17 |
CUI J, ZANG M, LIU Z, et al BIM product style classification and retrieval based on long-range style dependencies[J]. Buildings, 2023, 13 (9): 2280
doi: 10.3390/buildings13092280
|
18 |
杨冰, 许端清, 杨鑫, 等 基于艺术风格相似性规则的绘画图像分类[J]. 浙江大学学报: 工学版, 2013, 47 (8): 1486- 1492 YANG Bing, XU Duanqing, YANG Xin, et al Painting image classification based on aesthetic style similarity rule[J]. Journal of Zhejiang University: Engineering Science, 2013, 47 (8): 1486- 1492
|
19 |
谢秦秦, 何朗, 徐汝利 基于多特征融合的油画艺术风格分类[J]. 计算机科学, 2023, 50 (3): 223- 230 XIE Qinqin, HE Lang, XU Ruli Classification of oil painting art style based on multi-feature fusion[J]. Computer Science, 2023, 50 (3): 223- 230
doi: 10.11896/jsjkx.211200110
|
20 |
钱文华, 徐丹, 徐瑾, 等 基于信息熵的风格绘画分类研究[J]. 图学学报, 2019, 40 (6): 991- 999 QIAN Wenhua, XU Dan, XU Jin, et al Artistic paintings classification based on information entropy[J]. Journal of Graphics, 2019, 40 (6): 991- 999
|
21 |
PAN S J, YANG Q A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22 (10): 1345- 1359
doi: 10.1109/TKDE.2009.191
|
22 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60 (6): 84- 90
doi: 10.1145/3065386
|
23 |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Computer Vision – ECCV 2014. [S. l.]: Springer, 2014: 740–755.
|
24 |
CHAIB S, YAO H, GU Y, et al. Deep feature extraction and combination for remote sensing image classification based on pre-trained CNN models [C]// Proceedings of the Ninth International Conference on Digital Image Processing. Hong Kong: SPIE, 2017: 104203D.
|
25 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015–04–10)[2024–06–09]. https://arxiv.org/pdf/1409.1556.
|
26 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818–2826.
|
27 |
HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2261–2269.
|
28 |
MILANI F, FRATERNALI P A dataset and a convolutional model for iconography classification in paintings[J]. Journal on Computing and Cultural Heritage, 2021, 14 (4): 1- 18
|
29 |
ALIREZAZADEH P, DORNAIKA F, MOUJAHID A A deep learning loss based on additive cosine margin: application to fashion style and face recognition[J]. Applied Soft Computing, 2022, 131: 109776
doi: 10.1016/j.asoc.2022.109776
|
30 |
STREZOSKI G, WORRING M. OmniArt: multi-task deep learning for artistic data analysis [EB/OL]. (2017–08–02)[2024–06–09]. https://arxiv.org/pdf/1708.00684.
|
31 |
YIN X C, YIN X, HUANG K, et al Robust text detection in natural scene images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36 (5): 970- 983
doi: 10.1109/TPAMI.2013.182
|
32 |
BIANCO S, MAZZINI D, NAPOLETANO P, et al Multitask painting categorization by deep multibranch neural network[J]. Expert Systems with Applications, 2019, 135: 90- 101
doi: 10.1016/j.eswa.2019.05.036
|
33 |
WANG Z, ZHAO L, XING W. StyleDiffusion: controllable disentangled style transfer via diffusion models [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 7643–7655.
|
34 |
CUI J, LIU G, JIA Z L, et al Similar visual complexity analysis model based on subjective perception[J]. IEEE Access, 2019, 7: 148873- 148881
doi: 10.1109/ACCESS.2019.2946695
|
35 |
MENIS-MASTROMICHALAKIS O, SOFOU N, STAMOU G. Deep ensemble art style recognition [C]// Proceedings of the International Joint Conference on Neural Networks. Glasgow: IEEE, 2020: 1–8.
|
36 |
ELFWING S, UCHIBE E, DOYA K Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3- 11
doi: 10.1016/j.neunet.2017.12.012
|
37 |
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders [C]// Proceedings of the 25th International Conference on Machine Learning. Helsinki: ACM, 2008: 1096–1103.
|
38 |
BOURLARD H, KAMP Y Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59 (4): 291- 294
|
39 |
LI C, HARRISON B. StyleM: stylized metrics for image captioning built with contrastive N-grams [EB/OL]. (2022–01–04)[2024–06–09]. https://arxiv.org/pdf/2201.00975.
|
40 |
KHAN F S, BEIGPOUR S, VAN DE WEIJER J, et al Painting-91: a large scale database for computational painting categorization[J]. Machine Vision and Applications, 2014, 25 (6): 1385- 1397
doi: 10.1007/s00138-014-0621-6
|
41 |
FLOREA C, CONDOROVICI R, VERTAN C, et al. Pandora: description of a painting database for art movement recognition with baselines and perspectives [C]// Proceedings of the 24th European Signal Processing Conference. Budapest: IEEE, 2016: 918–922.
|
42 |
湛颖, 高妍, 谢凌云 中国国画情感—美感数据库[J]. 中国图象图形学报, 2019, 24 (12): 2267- 2278 ZHAN Ying, GAO Yan, XIE Lingyun Database for emotion and aesthetic analysis of traditional Chinese paintings[J]. Journal of Image and Graphics, 2019, 24 (12): 2267- 2278
doi: 10.11834/jig.190102
|
43 |
TAKAGI M, SIMO-SERRA E, IIZUKA S, et al. What makes a style: experimental analysis of fashion prediction [C]// Proceedings of the IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 2247–2253.
|
44 |
XU Z, TAO D, ZHANG Y, et al. Architectural style classification using multinomial latent logistic regression [C]// Computer Vision – ECCV 2014. [S. l.]: Springer, 2014: 600–615.
|
45 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
46 |
VINCENT P, LAROCHELLE H, LAJOIE I, et al Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371- 3408
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|