|
|
基于通道加权的多模态特征融合用于EEG疲劳驾驶检测 |
程文鑫( ),闫光辉*( ),常文文,吴佰靖,黄亚宁 |
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection |
Wenxin CHENG( ),Guanghui YAN*( ),Wenwen CHANG,Baijing WU,Yaning HUANG |
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
程文鑫,闫光辉,常文文,吴佰靖,黄亚宁. 基于通道加权的多模态特征融合用于EEG疲劳驾驶检测[J]. 浙江大学学报(工学版), 2025, 59(9): 1775-1783.
Wenxin CHENG,Guanghui YAN,Wenwen CHANG,Baijing WU,Yaning HUANG. Channel-weighted multimodal feature fusion for EEG-based fatigue driving detection. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1775-1783.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.001
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1775
|
1 |
HAN W, ZHAO J Driver behaviour and traffic accident involvement among professional urban bus drivers in China[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 74 (1): 184- 197
|
2 |
SINGH S. Critical reasons for crashes investigated in the national motor vehicle crash causation survey [EB/OL]. (2015-03-19). https://trid.trb.org/view/1346216.
|
3 |
COETZER R C, HANCKE G P. Eye detection for a real-time vehicle driver fatigue monitoring system [C]// 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden: IEEE, 2011: 66–71.
|
4 |
ZONG S, DONG F, CHENG Y, et al Application and challenges of EEG signals in fatigue driving detection[J]. Progress in Biochemistry and Biophysics, 2024, 51 (7): 1645- 1669
|
5 |
PENG B, ZHANG Y, WANG M, et al T-A-MFFNet: multi-feature fusion network for EEG analysis and driving fatigue detection based on time domain network and attention network[J]. Computational Biology and Chemistry, 2023, 104: 107863
doi: 10.1016/j.compbiolchem.2023.107863
|
6 |
ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35 (20): 14681- 14722
doi: 10.1007/s00521-021-06352-5
|
7 |
WU E Q, ZHU L M, ZHANG W M, et al Novel nonlinear approach for real-time fatigue EEG data: an infinitely warped model of weighted permutation entropy[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (6): 2437- 2448
|
8 |
WANG F, WU S, ZHANG W, et al Multiple nonlinear features fusion based driving fatigue detection[J]. Biomedical Signal Processing and Control, 2020, 62 (4): 102075
doi: 10.1016/j.bspc.2020.102075
|
9 |
WU E Q, XIONG P, TANG Z R, et al Detecting dynamic behavior of brain fatigue through 3-D-CNN-LSTM[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (1): 90- 100
doi: 10.1109/TSMC.2021.3062715
|
10 |
YANG Y, WU Q, FU Y, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition [C]// Neural Information Processing: 25th International Conference. Cambodia: Springer, 2018: 433–443.
|
11 |
王海玉, 王映龙, 闵建亮, 等 集成3种不同核分类器的疲劳脑电分类[J]. 计算机工程与设计, 2019, 40 (6): 1757- 1762 WANG Haiyu, WANG Yinglong, MIN Jianliang, et al Fatigue EEG classification by integrating three different kernel classifiers[J]. Computer Engineering and Design, 2019, 40 (6): 1757- 1762
|
12 |
CHAUDHURI A, ROUTRAY A Driver fatigue detection through chaotic entropy analysis of cortical sources obtained from scalp EEG signals[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (1): 185- 198
|
13 |
常文文, 闫光辉, 杨志飞, 等. 基于脑电熵值特征和功能连接的不同线型道路下驾驶状态检测 [J]. 电子学报, 2023, 51(10): 2874–2883. CHANG Wenwen, YAN Guanghui, YANG Zhifei, et al. Detection of driving state under different curve road based on entropy and functional connectivity of EEG [J]. Acta Electronica Sinica, 2023, 51(10): 2874–2883.
|
14 |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
|
15 |
GAO D, LI P, WANG M, et al CSF-GTNet: a novel multi-dimensional feature fusion network based on Convnext-GeLU-BiLSTM for EEG-signals-enabled fatigue driving detection[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28 (5): 2558- 2568
doi: 10.1109/JBHI.2023.3240891
|
16 |
SHI J, WANG K Fatigue driving detection method based on time-space-frequency features of multimodal signals[J]. Biomedical Signal Processing and Control, 2023, 84 (11): 104744
|
17 |
JIA H, XIAO Z, JI P End-to-end fatigue driving EEG signal detection model based on improved temporal-graph convolution network[J]. Computers in Biology and Medicine, 2023, 152 (1): 106431
|
18 |
ZHENG W L, LU B L A multimodal approach to estimating vigilance using EEG and forehead EOG[J]. Journal of Neural Engineering, 2017, 14 (2): 026017
doi: 10.1088/1741-2552/aa5a98
|
19 |
DINGES D F, PACK F, WILLIAMS K, et al Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5 hours per night[J]. Sleep, 1997, 20 (4): 267- 277
|
20 |
CAO Z, CHUANG C H, KING J K, et al Multi-channel EEG recordings during a sustained-attention driving task[J]. Scientific Data, 2019, 6 (1): 19
doi: 10.1038/s41597-019-0027-4
|
21 |
ZHANG X, YAO L, KANHERE S S, et al Mindid: person identification from brain waves through attention-based recurrent neural network[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2 (3): 149
|
22 |
LI X, TANG J, LI X, et al CWSTR-Net: a channel-weighted spatial-temporal residual network based on nonsmooth nonnegative matrix factorization for fatigue detection using EEG signals[J]. Biomedical Signal Processing and Control, 2024, 97 (6): 106685
|
23 |
WANG F, MA M, ZHANG X Study on a portable electrode used to detect the fatigue of tower crane drivers in real construction environment[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2506914
|
24 |
仝航, 杨燕, 江永全 检测脑电癫痫的多头自注意力机制神经网络[J]. 计算机科学与探索, 2023, 17 (2): 442- 452 TONG Hang, YANG Yan, JIANG Yongquan Multi-head self-attention neural network for detecting EEG epilepsy[J]. Computer Science and Exploration, 2023, 17 (2): 442- 452
|
25 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Advances in Neural Information Processing Systems. California: IEEE, 2017: 6000–6010.
|
26 |
HIDALGO ROGEL J M, MARTÍNEZ BELTRÁN E T, QUILES PÉREZ M, et al Studying drowsiness detection performance while driving through scalable machine learning models using electroencephalography[J]. Cognitive Computation, 2024, 16 (3): 1253- 1267
|
27 |
HOCHREITER S Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
28 |
ZENG H, YANG C, DAI G, et al EEG classification of driver mental states by deep learning[J]. Cognitive Neurodynamics, 2018, 12 (6): 597- 606
|
29 |
INGOLFSSON T M, HERSCHE M, WANG X, et al. EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain-machine interfaces [C]// 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Toronto: IEEE, 2020: 2958–2965.
|
30 |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
31 |
GAO Z, WANG X, YANG Y, et al EEG-based spatio-temporal convolutional neural network for driver fatigue evaluation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30 (9): 2755- 2763
doi: 10.1109/TNNLS.2018.2886414
|
32 |
BAGHERZADEH S, SHALBAF A EEG-based schizophrenia detection using fusion of effective connectivity maps and convolutional neural networks with transfer learning[J]. Cognitive Neurodynamics, 2024, 18 (5): 2767- 2778
doi: 10.1007/s11571-024-10121-0
|
33 |
周逸凡, 张灵维, 周正东, 等 基于注意力机制和深度学习的群体语言想象脑电信号分类[J]. 浙江大学学报: 工学版, 2024, 58 (12): 2540- 2546 ZHOU Yifan, ZHANG Lingwei, ZHOU Zhengdong, et al Classification of group speech imagined EEG signals based on attention mechanism and deep learning[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (12): 2540- 2546
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|