[1] ANG K K, CHUA K S G, PHUA K S, et al. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke [J]. Clinical EEG and Neuroscience, 2015, 46(4):310-320.
[2] KIGUCHI K, HAYASHI Y. Motion estimation based on EMG and EEG signals to control wearable robots [C]//IEEE International Conference on Systems, Man and Cybernetics (SMC). [S. l.]: IEEE, 2013:4213-4218.
[3] PFURTSCHELLER G, NEUPER C. Movement and ERD/ERS [M]. The Bereitschaftspotential, US: Springer, 2003: 191-206.
[4] LEW E, CHAVARRIAGA R, SILVONI S, et al.Detection of self-paced reaching movement intention from EEG signals [J]. Frontiers in Neuroengineering, 2012,5(13): 13-18.
[5] KORIK A, SOSNIK R, SIDDIQUE N, et al. 3D hand motion trajectory prediction from EEG mu and beta bandpower [J]. Progress in Brain Research, 2016,22(8): 71-105.
[6] PLOW E B, ARORA P, PLINE M A, et al. Within-limb somatotopy in primary motor cortex-revealed using fMRI [J]. Cortex, 2009, 46(3): 310-321.
[7] VUCKOVIC A, SEPULVEDA F. Delta band contribution in cue based single trial classification of real and imaginary wrist movements [J]. Medical Biological Engineering Computing, 2008, 46(6): 529-539.
[8] GHANI F, SULTAN H, ANWAR D, et al. Classification of wrist movements using EEG signals [J]. Journal of Next Generation Information Technology, 2013, 4(8): 29-39.
[9] KRAHENBUHL P, DOERSCH C, DONAHUE J, et al. Data-dependent initializations of convolutional neural networks [J]. Computer Science, 2015, 11(1): 1-12.
[10] 曾祥炎,陈军.E-Prime实验设计技术[M].广州:暨南大学出版社,2009: 45-47.
[11] EDELMAN B J, BSXTER B, HE B. EEG Source imaging enhances the decoding of complex right hand motor imagery tasks [J]. IEEE Transactions on Biomedical Engineering, 2015, 63(1): 4-14.
[12] FORMAGGIO E, STORTI S F, GALAZZO I B, et al. Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements [J]. Journal of Neuroengineering and Rehabilitation, 2013, 10(1):1-10.
[13] MCFARLAND D J, MCCANE L M, DAVID S V, et al. Spatial filter selection for EEG-based communication [J]. Electroencephalography and Clinical Neurophysiology, 1997, 103(3): 386-394.
[14] SHEEHY N. Electroencephalography: basic principles, clinical applications, and related fields [J]. The Quarterly Review of Biology, 1983, 58(2):3108-3113.
[15] PFURTSCHELLER G, FH L D S. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(11): 1842-1857.
[16] TOME D, MONTI F, BAROFFIO L, et al. Deep convolutional neural networks for pedestrian detection [J]. Signal Processing Image Communication, 2015,47(3): 482-489.
[17] TANG Z, LI C, SUN S. Single-trial EEG classification of motor imagery using deep convolutional neural networks [J]. Optik-International Journal for Light andElectron Optics, 2016, 130(1): 11-18.
[18] GENEVIEVE B O, MULLER K R. Neural networks: tricks of the trade [M]. Berlin: Springer, 2012:658-659.
[19] ROBINSON N, VINOD A P, ANG K K, et al. EEG based classification of fast and slow hand movements using wavelet-CSP algorithm [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(8): 2123-2132.
[20] 李晓欧.基于独立分量分析和共同空间模式的脑电特征提取方法[J].生物医学工程学杂志,2010,27(6): 1370-1374. LI Xiao-ou. EEG feature extraction method based on independent component analysis and common space model [J]. Journal of Biomedical Engineering, 2010, 27(6): 1370-1374.
[21] HSU W Y, LIN C C, JU M S, et al. Wavelet-based fractal features with active segment selection: application to single-trial EEG data [J]. Journal of Neuroscience Methods, 2007, 163(1): 145-160.
[22] GHAEMI A, RASHEDI E, POURRAHIMI A M, et al. Automatic channel selection in EEG signals for classification of left or right hand movement in brain computer interfaces using improved binary gravitation search algorithm [J]. Biomedical Signal Processing and Control, 2017, 33(1): 109-118.
[23] SUBASI A. EEG signal classification using wavelet feature extraction and a mixture of expert model [J].Expert System with Application, 2007, 32(4):1084-1093.
[24] 杨新亮,罗志增.基于表面肌电信号的时频组合特征融合识别[J].华中科技大学学报:自然科学版,2011,39(2): 153-156. YANG Xin-liang, LUO Zhi-zeng. A recognition method of multi-channel SEMG based on the fusion of time-frequency combination characteristics [J]. Journal of Huazhong University of Science and Technology: Nature Science, 2011,39(2): 153-156.
[25] 王洁贞,韩兢,刘言训,等.Kappa统计量在一致性和重现性检验中的应用[J].山东大学学报:医学版,1996(3): 209-212. WANG Jie-zhen, HAN Jing, LIU Yan-xun, et al. Application of Kappa statistic in consistency and reproducibility test [J]. Journal of Shandong University: Health Sciences, 1996(3): 209-212.
[26] WANG B, JUN L, BAI J, et al. EEG recognition based on multiple types of information by using wavelet packet transform and neural networks [C]//International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai: IEEE, 2005:5377-5380.
[27] PFURTSCHELLER G, FH L D S. Event-related EEG/MEG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(11): 1842-1857.
[28] PFURTSCHELLER G, BRUNNER C, SCHLOGL A, et al. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks [J]. Neuroimage, 2006, 31(1): 153-159.
[29] 张志杰,刘强,黄希庭.时间知觉的神经机制-EEG时频分析的探索[J].西南大学学报:自然科学版,2007,29(10): 152-155. ZHANG Zhi-jie, LIU Qiang, HUANG Xi-ting. Mechanisms of time perception time-frequency analysis based on EEG data [J]. Journal of Southwest University: Natural Science Edition, 2007, 29(10): 152-155.
[30] PISTOHL T, SCHULZEBONHAGE A, AERTSEN A, et al. Decoding natural grasp types from human EcoG [J]. Neuroimage, 2011, 59(1): 248-260.
[31] MEIER J D, AFLALO T N, KASTNER S, et al. Complex organization of human primary motor cortex: a high-resolution fMRI study [J]. Journal of Neurophysiology, 2008, 100(4): 1800-1812.
[32] SCHIEBER M H, HIBBARD L S. How somatotopic is the motor cortex hand area? [J]. Science, 1993,261(5120): 489-492.
[33] LEMM S, BLANKERTZ B, CURIO G, et al. Spatio-spectral filters for improving the classification of single trial EEG [J]. IEEE Transactions on Bio-medical Engineering, 2005, 52(9): 1541-1548.
[34] SIVASANKARI K, THANUSHKODI K. An improved EEG signal classification using neural network with the consequence of ICA and STFT [J]. Journal of Electrical Engineering and Technology, 2014, 9(9): 1060-1071. |