生物医学工程 |
|
|
|
|
基于脑电信号预发作数据段选取的癫痫发作预测 |
王雅静1(),王群1,*(),李博闻1,刘志文1,朴媛媛2,遇涛2 |
1. 北京理工大学 信息与电子学院,北京 100081 2. 首都医科大学 宣武医院,北京 100053 |
|
Seizure prediction based on pre-ictal period selection of EEG signal |
Ya-jing WANG1(),Qun WANG1,*(),Bo-wen LI1,Zhi-wen LIU1,Yuan-yuan PIAO2,Tao YU2 |
1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China 2. Xuanwu Hospital, Capital Medical University, Beijing 100053, China |
引用本文:
王雅静,王群,李博闻,刘志文,朴媛媛,遇涛. 基于脑电信号预发作数据段选取的癫痫发作预测[J]. 浙江大学学报(工学版), 2020, 54(11): 2258-2265.
Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.
链接本文:
http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.021
或
http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2258
|
1 |
BOER H M D, MULA M, SANDER J W The global burden and stigma of epilepsy[J]. Epilepsy and Behavior, 2008, 12 (4): 540- 546
doi: 10.1016/j.yebeh.2007.12.019
|
2 |
LEONARDI M, USTUN T B The global burden of epilepsy[J]. Epilepsia, 2010, 43 (6): 21- 25
|
3 |
AARABI A, FAZEL-REZAI R, AGHAKHANI Y. EEG seizure prediction: measures and challenges [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 1864-1867.
|
4 |
SAAB M E, GOTMAN J A system to detect the onset of epileptic seizures in scalp EEG[J]. Clinical Neurophysiology, 2005, 116 (2): 427- 442
doi: 10.1016/j.clinph.2004.08.004
|
5 |
TEIXEIRA C A, DIREITO B, BANDARABADI M, et al Epileptic seizure predictors based on computational intelligence techniques: acomparative study with 278 patients[J]. Computer Methods and Programs in Biomedicine, 2014, 114 (3): 324- 336
doi: 10.1016/j.cmpb.2014.02.007
|
6 |
BANDARABADI M, TEIXEIRA C A, RASEKHI J, et al Epileptic seizure prediction using relative spectral power features[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126 (2): 237- 248
doi: 10.1016/j.clinph.2014.05.022
|
7 |
YUN P, LAN L, PARHI KESHAB K, et al Seizure prediction with spectral power of EEG using cost-sensitive support vector machines[J]. Epilepsia, 2011, 52 (10): 1761- 1770
doi: 10.1111/j.1528-1167.2011.03138.x
|
8 |
ALARCON G, BINNIE C D, ELWES R D C, et al Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy[J]. Electroencephalography and Clinical Neurophysiology, 1995, 94 (5): 326- 337
doi: 10.1016/0013-4694(94)00286-T
|
9 |
SLAWSKI M Fisher's linear discriminant analysis[J]. Department of Computer Science, 2015, 16 (94): 237- 280
|
10 |
PIERO P, FRANCOIS D, JEAN G Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology[J]. Brain, 2014, 137 (1): 183- 196
doi: 10.1093/brain/awt299
|
11 |
FKREUZ M On the predictability of epileptic seizures[J]. Dkgest of the World Latest Medical Information, 2005, 116 (3): 569- 587
|
12 |
FLORIAN M, ANDRZEJAK R G, ELGER C E, et al Seizure prediction: the long and winding road[J]. Brain, 2007, 130 (2): 314- 333
|
13 |
LITT B, ECHAUZ J Prediction of epileptic seizures[J]. Lancet Neurology, 2002, 1 (1): 22- 30
doi: 10.1016/S1474-4422(02)00003-0
|
14 |
JACOBS J, STABA R, ASANO E, et al High-frequency oscillations (HFOs) in clinical epilepsy[J]. Progress in Neurobiology, 2012, 98 (3): 302- 315
doi: 10.1016/j.pneurobio.2012.03.001
|
15 |
OUYANG G, LI X, LI Y, et al Application of wavelet-based similarity analysis to epileptic seizures prediction[J]. Computers in Biology and Medicine, 2007, 37 (4): 430- 437
doi: 10.1016/j.compbiomed.2006.08.010
|
16 |
LUIGI C, ANTONIO M, GUIDO P, et al Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57 (5): 1124- 1132
doi: 10.1109/TBME.2009.2038990
|
17 |
IASEMIDIS L D, SACKELLARES J C, ZAVERI H P, et al Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures[J]. Brain Topography, 1990, 2 (3): 187- 201
doi: 10.1007/BF01140588
|
18 |
IASEMIDIS L D Epileptic seizure prediction and control[J]. IEEE Transactions on Biomedical Engineering, 2003, 50 (5): 549- 558
doi: 10.1109/TBME.2003.810705
|
19 |
SILVA F H L D, WOUTER B, KALITZIN STILIYAN N, et al Dynamical diseases of brain systems: different routes to epileptic seizures[J]. IEEE Transactions on Bio-medical Engineering, 2003, 50 (5): 540- 8
doi: 10.1109/TBME.2003.810703
|
20 |
NOACHTAR S, RéMI J The role of EEG in epilepsy: acritical review[J]. Epilepsy and Behavior, 2009, 15 (1): 22- 33
doi: 10.1016/j.yebeh.2009.02.035
|
21 |
UHLHAAS P J, SINGER W Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52 (1): 155- 168
doi: 10.1016/j.neuron.2006.09.020
|
22 |
FLORIAN M, ANDRZEJAK RALPH G, THOMAS K, et al Automated detection of a preseizure state based on a decrease in synchronizationin intracranial electroencephalogram recordings from epilepsy patients[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2003, 67 (1): 021912
|
23 |
KASPAR S, HOWAN L, ELGER CHRISTIAN E, et al Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG[J]. Brain, 2007, 130 (1): 65- 77
|
24 |
WILLIAMSON J R, BLISS D W, BROWNE D W, et al Seizure prediction using EEG spatiotemporal correlation structure[J]. Epilepsy and Behavior, 2012, 25 (2): 230- 238
doi: 10.1016/j.yebeh.2012.07.007
|
25 |
ASSI E B, SAWAN M, NGUYEN D K, et al. A hybrid mRMR-genetic based selection method for the prediction of epileptic seizures [C]// 2015 IEEE Biomedical Circuits and Systems Conference. Atlanta: [s.n.], 2015: 1−4.
|
26 |
DIREITO B, VENTURA F, TEIXEIRA C, et al. Optimized feature subsets for epileptic seizure prediction studies [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: [s.n.], 2011: 1636−1639.
|
27 |
ZHANG Z, PARHI K K Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10 (3): 693- 706
doi: 10.1109/TBCAS.2015.2477264
|
28 |
BIRJANDTALAB J, POUYAN M B, COGAN D, et al Automated seizure detection using limited-channel EEG and non-linear dimension reduction[J]. Computers in Biology and Medicine, 2017, 82 (C): 49- 58
|
29 |
GOLDBERGER A L, AMARAL L A, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): 215- 220
|
30 |
WENDLING F, CHAUVEL P, BIRABEN A, et al From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy[J]. Frontiers in Systems Neuroscience, 2010, 4: 154
|
31 |
WANG Q, TIAN X, LIU Z. Seizure prediction in eeg records based on spatial-frequency features and preictal period selection [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: [s.n.], 2018: 5354–5357.
|
32 |
MYERS M H, PADMANABHA A, HOSSAIN G, et al Seizure prediction and detection via phase and amplitude lock values[J]. Frontiers in Human Neuroscience, 2016, 10: 80
|
33 |
CONSUL S, MORSHED B I, KOZMA R. Hardware efficient seizure prediction algorithm [J]. SpieNanosensors, Biosensors, and Info-Tech Sensors and Systems, 2013, 8691: 1–10.
|
34 |
CHU H, CHUNG C K, JEONG W, et al Predicting epileptic seizures from scalp EEG based on attractor state analysis[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 75- 87
|
35 |
ALOTAIBY T N, ALSHEBEILI S A, ALOTAIBI F M, et al Epileptic seizure prediction using CSP and LDA for scalp EEG signals[J]. Computational Intelligence and Neuroscience, 2017, (6): 1- 11
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|