Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (11): 2258-2265    DOI: 10.3785/j.issn.1008-973X.2020.11.021
生物医学工程     
基于脑电信号预发作数据段选取的癫痫发作预测
王雅静1(),王群1,*(),李博闻1,刘志文1,朴媛媛2,遇涛2
1. 北京理工大学 信息与电子学院,北京 100081
2. 首都医科大学 宣武医院,北京 100053
Seizure prediction based on pre-ictal period selection of EEG signal
Ya-jing WANG1(),Qun WANG1,*(),Bo-wen LI1,Zhi-wen LIU1,Yuan-yuan PIAO2,Tao YU2
1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
2. Xuanwu Hospital, Capital Medical University, Beijing 100053, China
 全文: PDF(1202 KB)   HTML
摘要:

为了提高癫痫发作预测的准确性,提出针对病患个体进行癫痫发作预测的算法,包括特征提取、预发作数据段选取、特征挑选与导联挑选. 算法采用半重叠的2 s窗对每个导联分别提取时频特征和空域特征. 从发作前期选择与发作间期相比具有最大线性可分性的连续10 min数据作为预发作数据段的有效正样本. 算法通过弹性网进行特征挑选,再基于所选特征通过贪婪算法选择有效导联,将有效导联的有效特征输入到分类器中. 将该算法在MIT公共头皮脑电数据库和宣武医院收集的数据集上进行测试,测试结果为:在MIT数据库上的击中率为95.76%,假阳性率为0.1073 h?1;在宣武医院数据集上的击中率为97.80%,假阳性率为0.0453 h?1. 结果表明,该算法具有较高的击中率和较低的假阳性率.

关键词: 癫痫发作预测头皮脑电图(sEEG)患者特异性特征挑选预发作数据段选取    
Abstract:

A novel algorithm for seizure prediction based on patient specific manner was proposed to improve the accuracy of epileptic prediction, including feature extraction, pre-ictal period selection, feature selection and channel selection. Time-frequency features and spatial features were extracted from each channel by 2 s windows with 1 s overlap. A continuous 10 min data was selected as a valid positive sample of the pre-ictal period from segment before seizure onset, which achieved the maximum linear separability compared with the inter-ictal period. The effective features were selected by elastic net, then the selected effective features were used to select effective channels in greedy manner. The effective features of effective channels were input into classifier. The algorithm was tested on the scalp electroencephalogram (sEEG) from the MIT Physio database and the database collected in Xuanwu Hospital. The algorithm achieved a recall of 95.76% and a false positive rate of 0.1073 h?1 in MIT database, and a recall of 97.80% and a false positive rate of 0.0453 h?1 in Xuanwu Hospital database. Results show that the algorithm has high sensitivity and low false positive rate.

Key words: seizure prediction    scalp electroencephalogram (sEEG)    patient-specific    feature selection    pre-ictal period selection
收稿日期: 2019-11-25 出版日期: 2020-12-15
CLC:  TP 29  
基金资助: 国家自然科学基金资助项目(81771395)
通讯作者: 王群     E-mail: 3220180493@bit.edu.cn;wq99102@bit.edu.cn
作者简介: 王雅静(1997—),女,硕士生,从事医学信号处理研究.orcid.org/0000-0002-2027-9104. E-mail: 3220180493@bit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王雅静
王群
李博闻
刘志文
朴媛媛
遇涛

引用本文:

王雅静,王群,李博闻,刘志文,朴媛媛,遇涛. 基于脑电信号预发作数据段选取的癫痫发作预测[J]. 浙江大学学报(工学版), 2020, 54(11): 2258-2265.

Ya-jing WANG,Qun WANG,Bo-wen LI,Zhi-wen LIU,Yuan-yuan PIAO,Tao YU. Seizure prediction based on pre-ictal period selection of EEG signal. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2258-2265.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.11.021        http://www.zjujournals.com/eng/CN/Y2020/V54/I11/2258

图 1  数据处理流程
图 2  脑功能连接网络矩阵
编号 Ne nh R /% FPR /h?1
1 6 5.6 94.44 0.0430
5 4 4.0 100.00 0.1311
6 10 9.5 95.00 0.1741
7 3 3.0 100.00 0.1717
8 5 4.4 88.00 0.0419
9 4 3.5 87.50 0.1177
10 7 6.5 93.88 0.0884
11 3 3.0 100.00 0.1387
14 6 6.0 100.00 0.1195
16 5 4.4 88.00 0.1814
18 4 3.7 93.75 0.0916
19 2 2.0 100.00 0.0056
20 6 6.0 100.00 0.0487
22 3 3.0 100.00 0.1483
平均 ? ? 95.76 0.1073
表 1  MIT公共数据库预测结果
编号 T Ne nh R /% FPR /h?1
1 20 6 5.5 91.67 0.0412
2 22 6 4.8 80.56 0.0302
3 8 2 2.0 100.00 0.0412
4 16 3 3.0 100.00 0.1161
5 8 2 2.0 100.00 0.0527
6 11 4 4.0 100.00 0.0475
7 18 10 9.7 97.00 0.0280
8 8 2 2.0 100.00 0.0379
9 22 9 9.0 100.00 0.0726
10 19 6 6.0 100.00 0.0632
11 19 5 5.0 100.00 0.0485
12 17 4 4.0 100.00 0.0410
13 7 4 4.0 100.00 0.0465
14 13 4 4.0 100.00 0.0334
15 8 4 4.0 100.00 0.0489
16 16 7 7.0 100.00 0.0105
17 11 5 5.0 100.00 0.0324
18 27 9 8.0 88.89 0.0395
19 8 2 2.0 100.00 0.0289
平均 ? ? ? 97.80 0.0453
表 2  宣武医院数据集预测结果
图 3  预发作期与发作前10 min的特征对比
图 4  有无PPS对击中率的影响
图 5  有无PPS对假阳性率的影响
图 6  有无FCN对击中率的影响
图 7  有无FCN对假阳性率的影响
时间 方法 数据来源 发作次数 R /% FPR /h?1
2016 文献[32] MIT10位患者 31 77.00 0.1700
2013 文献[33] MIT10位患者 51 88.20 ?
2017 文献[34] MIT13位患者 45 86.67 0.3670
2017 文献[35] MIT24位患者 170 89.00 0.3900
2017 文献[36] MIT13位患者 64 81.20 0.1600
本研究 MIT17位患者 75 95.76 0.1073
表 3  基于MIT数据库的不同方法结果对比
1 BOER H M D, MULA M, SANDER J W The global burden and stigma of epilepsy[J]. Epilepsy and Behavior, 2008, 12 (4): 540- 546
doi: 10.1016/j.yebeh.2007.12.019
2 LEONARDI M, USTUN T B The global burden of epilepsy[J]. Epilepsia, 2010, 43 (6): 21- 25
3 AARABI A, FAZEL-REZAI R, AGHAKHANI Y. EEG seizure prediction: measures and challenges [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 1864-1867.
4 SAAB M E, GOTMAN J A system to detect the onset of epileptic seizures in scalp EEG[J]. Clinical Neurophysiology, 2005, 116 (2): 427- 442
doi: 10.1016/j.clinph.2004.08.004
5 TEIXEIRA C A, DIREITO B, BANDARABADI M, et al Epileptic seizure predictors based on computational intelligence techniques: acomparative study with 278 patients[J]. Computer Methods and Programs in Biomedicine, 2014, 114 (3): 324- 336
doi: 10.1016/j.cmpb.2014.02.007
6 BANDARABADI M, TEIXEIRA C A, RASEKHI J, et al Epileptic seizure prediction using relative spectral power features[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126 (2): 237- 248
doi: 10.1016/j.clinph.2014.05.022
7 YUN P, LAN L, PARHI KESHAB K, et al Seizure prediction with spectral power of EEG using cost-sensitive support vector machines[J]. Epilepsia, 2011, 52 (10): 1761- 1770
doi: 10.1111/j.1528-1167.2011.03138.x
8 ALARCON G, BINNIE C D, ELWES R D C, et al Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy[J]. Electroencephalography and Clinical Neurophysiology, 1995, 94 (5): 326- 337
doi: 10.1016/0013-4694(94)00286-T
9 SLAWSKI M Fisher's linear discriminant analysis[J]. Department of Computer Science, 2015, 16 (94): 237- 280
10 PIERO P, FRANCOIS D, JEAN G Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology[J]. Brain, 2014, 137 (1): 183- 196
doi: 10.1093/brain/awt299
11 FKREUZ M On the predictability of epileptic seizures[J]. Dkgest of the World Latest Medical Information, 2005, 116 (3): 569- 587
12 FLORIAN M, ANDRZEJAK R G, ELGER C E, et al Seizure prediction: the long and winding road[J]. Brain, 2007, 130 (2): 314- 333
13 LITT B, ECHAUZ J Prediction of epileptic seizures[J]. Lancet Neurology, 2002, 1 (1): 22- 30
doi: 10.1016/S1474-4422(02)00003-0
14 JACOBS J, STABA R, ASANO E, et al High-frequency oscillations (HFOs) in clinical epilepsy[J]. Progress in Neurobiology, 2012, 98 (3): 302- 315
doi: 10.1016/j.pneurobio.2012.03.001
15 OUYANG G, LI X, LI Y, et al Application of wavelet-based similarity analysis to epileptic seizures prediction[J]. Computers in Biology and Medicine, 2007, 37 (4): 430- 437
doi: 10.1016/j.compbiomed.2006.08.010
16 LUIGI C, ANTONIO M, GUIDO P, et al Real-time epileptic seizure prediction using AR models and support vector machines[J]. IEEE Transactions on Biomedical Engineering, 2010, 57 (5): 1124- 1132
doi: 10.1109/TBME.2009.2038990
17 IASEMIDIS L D, SACKELLARES J C, ZAVERI H P, et al Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures[J]. Brain Topography, 1990, 2 (3): 187- 201
doi: 10.1007/BF01140588
18 IASEMIDIS L D Epileptic seizure prediction and control[J]. IEEE Transactions on Biomedical Engineering, 2003, 50 (5): 549- 558
doi: 10.1109/TBME.2003.810705
19 SILVA F H L D, WOUTER B, KALITZIN STILIYAN N, et al Dynamical diseases of brain systems: different routes to epileptic seizures[J]. IEEE Transactions on Bio-medical Engineering, 2003, 50 (5): 540- 8
doi: 10.1109/TBME.2003.810703
20 NOACHTAR S, RéMI J The role of EEG in epilepsy: acritical review[J]. Epilepsy and Behavior, 2009, 15 (1): 22- 33
doi: 10.1016/j.yebeh.2009.02.035
21 UHLHAAS P J, SINGER W Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology[J]. Neuron, 2006, 52 (1): 155- 168
doi: 10.1016/j.neuron.2006.09.020
22 FLORIAN M, ANDRZEJAK RALPH G, THOMAS K, et al Automated detection of a preseizure state based on a decrease in synchronizationin intracranial electroencephalogram recordings from epilepsy patients[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2003, 67 (1): 021912
23 KASPAR S, HOWAN L, ELGER CHRISTIAN E, et al Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG[J]. Brain, 2007, 130 (1): 65- 77
24 WILLIAMSON J R, BLISS D W, BROWNE D W, et al Seizure prediction using EEG spatiotemporal correlation structure[J]. Epilepsy and Behavior, 2012, 25 (2): 230- 238
doi: 10.1016/j.yebeh.2012.07.007
25 ASSI E B, SAWAN M, NGUYEN D K, et al. A hybrid mRMR-genetic based selection method for the prediction of epileptic seizures [C]// 2015 IEEE Biomedical Circuits and Systems Conference. Atlanta: [s.n.], 2015: 1−4.
26 DIREITO B, VENTURA F, TEIXEIRA C, et al. Optimized feature subsets for epileptic seizure prediction studies [C]// International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: [s.n.], 2011: 1636−1639.
27 ZHANG Z, PARHI K K Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power[J]. IEEE Transactions on Biomedical Circuits and Systems, 2016, 10 (3): 693- 706
doi: 10.1109/TBCAS.2015.2477264
28 BIRJANDTALAB J, POUYAN M B, COGAN D, et al Automated seizure detection using limited-channel EEG and non-linear dimension reduction[J]. Computers in Biology and Medicine, 2017, 82 (C): 49- 58
29 GOLDBERGER A L, AMARAL L A, GLASS L, et al PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101 (23): 215- 220
30 WENDLING F, CHAUVEL P, BIRABEN A, et al From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy[J]. Frontiers in Systems Neuroscience, 2010, 4: 154
31 WANG Q, TIAN X, LIU Z. Seizure prediction in eeg records based on spatial-frequency features and preictal period selection [C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Honolulu: [s.n.], 2018: 5354–5357.
32 MYERS M H, PADMANABHA A, HOSSAIN G, et al Seizure prediction and detection via phase and amplitude lock values[J]. Frontiers in Human Neuroscience, 2016, 10: 80
33 CONSUL S, MORSHED B I, KOZMA R. Hardware efficient seizure prediction algorithm [J]. SpieNanosensors, Biosensors, and Info-Tech Sensors and Systems, 2013, 8691: 1–10.
34 CHU H, CHUNG C K, JEONG W, et al Predicting epileptic seizures from scalp EEG based on attractor state analysis[J]. Computer Methods and Programs in Biomedicine, 2017, 143: 75- 87
35 ALOTAIBY T N, ALSHEBEILI S A, ALOTAIBI F M, et al Epileptic seizure prediction using CSP and LDA for scalp EEG signals[J]. Computational Intelligence and Neuroscience, 2017, (6): 1- 11
[1] 席志鹏,楼卓,李晓霞,孙艳,杨强,颜文俊. 集中式光伏电站巡检无人机视觉定位与导航[J]. 浙江大学学报(工学版), 2019, 53(5): 880-888.
[2] 荆丹翔,韩军,徐志伟,陈鹰. 基于成像声呐的水下多目标跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(4): 753-760.
[3] 任逸飞, 陆志强, 刘欣仪, 张猛. 考虑技能水平的多技能资源约束项目调度[J]. 浙江大学学报(工学版), 2017, 51(5): 1000-1006.
[4] 周炳海, 赵猛. 柔性Job Shops集成调度启发式算法[J]. 浙江大学学报(工学版), 2016, 50(6): 1073-1079.
[5] 周炳海, 陈锦祥, 赵猛. 基于晶圆优先级的连续型Interbay搬运系统性能分析[J]. 浙江大学学报(工学版), 2015, 49(2): 296-302.
[6] 赵立杰, 柴天佑, 袁德成, 刁晓坤. 增强操作工况识别可靠性的概率PLS-ELM方法[J]. J4, 2013, 47(10): 1747-1752.
[7] 孙跃, 赵志斌, 苏玉刚, 唐春森. 非接触电能传输系统参数非线性规划[J]. J4, 2013, 47(2): 353-360.
[8] 孟庆龙, 王元. 基于CFD的空间场温度系统建模与控制[J]. J4, 2012, 46(8): 1478-1484.
[9] 赵立杰, 汤健, 柴天佑. 基于选择性极限学习机集成的磨机负荷软测量[J]. J4, 2011, 45(12): 2088-2092.
[10] 夏明, 董亚波, 鲁东明. 无线传感网逐跳自适应FEC传输可靠性
保证方法
[J]. J4, 2011, 45(2): 273-279.
[11] 孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J]. J4, 2010, 44(7): 1288-1291.
[12] 王建中, 金波, 鲁仁全. 基于渗漏模型的城市排水系统建模与分析[J]. J4, 2010, 44(7): 1382-1386.
[13] 汤健, 赵立杰, 岳恒, 柴天佑. 基于多源数据特征融合的球磨机负荷软测量[J]. J4, 2010, 44(7): 1406-1413.