Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (1): 73-81    DOI: 10.3785/j.issn.1006-754X.2023.00.007
建模、仿真、分析与决策     
两栖仿海龟机器人动力学建模与运动控制研究
芮宏斌(),李路路,王天赐,段凯文
西安理工大学 机械与精密仪器工程学院,陕西 西安 710048
Research on dynamic modeling and motion control of amphibious turtle inspired robot
Hong-bin RUI(),Lu-lu LI,Tian-ci WANG,Kai-wen DUAN
College of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China
 全文: PDF(4081 KB)   HTML
摘要:

为了提高两栖仿海龟机器人行走的稳定性,对其进行动力学建模,并基于PID(proportional integral derivative,比例积分微分)反馈控制策略提出了一种力/位控制模型。首先,根据机器人的运动学模型,得到了支腿的变换矩阵和雅可比矩阵,并利用虚功原理建立了足端与液压缸之间的力传递模型。然后,利用拉格朗日法对机器人进行动力学建模,推导了支腿的动力学方程,同时进行了动力学仿真,并将实时的足端受力导入动力学方程进行计算,验证了动力学模型的正确性。最后,搭建了液压仿真模型,并在ADAMS?AMESim?MATLAB联合仿真环境中开展了机器人运动仿真。仿真结果显示:与纯位置控制模式相比,力/位控制模式下机器人膝关节的转动更加平稳,液压缸的动力输出更稳定且功耗更小。研究结果对提高机器人运动的稳定性、增强运动控制系统的鲁棒性和提高液压系统的总效率具有借鉴意义。

关键词: 机器人动力学力/位控制联合仿真    
Abstract:

In order to improve the walking stability of amphibious turtle inspired robot, a dynamics model was established, and a force/position control model was proposed based on the PID (proportional integral derivative) feedback control strategy. Firstly, according to the kinematics model of the robot, the transformation matrix and Jacobian matrix of the outrigger were obtained, and a force transfer model between foot end and hydraulic cylinder was established by the virtual work principle. Then, the Lagrange method was used to model the dynamics of the robot, and the dynamics equation of the outrigger was derived. At the same time, the dynamics simulation was carried out, and the real-time force on the foot end was introduced into the dynamics equation for calculation, which verified the correctness of the dynamics model. Finally, a hydraulic simulation model was built, and the robot motion simulation was carried out in the ADAMS?AMESim?MATLAB co-simulation environment. The simulation results showed that compared with the pure position control mode, the rotation of the robot knee joint under the force/position control mode was more stable, and the power output of the hydraulic cylinder was more stable and the power consumption was less. The research results have reference significance for improving the stability of robot motion, enhancing the robustness of motion control system and improving the overall efficiency of hydraulic system.

Key words: robot    dynamics    force/position control    co-simulation
收稿日期: 2022-05-17 出版日期: 2023-03-06
CLC:  TH 113  
基金资助: 国家自然科学基金面上项目(51775432);陕西省技术创新引导专项(2018ZKC-160);陕西省教育厅重点科研计划项目(22JY051);陕西省科技计划重点研发项目(2023-YBGY-357)
作者简介: 芮宏斌(1978—),男,陕西西安人,副教授,博士,从事车辆系统动力学与控制技术、特种移动机器人设计研究,E-mail: Hongbin.rui@126.com,https://orcid.org/0000-0002-2718-831X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
芮宏斌
李路路
王天赐
段凯文

引用本文:

芮宏斌,李路路,王天赐,段凯文. 两栖仿海龟机器人动力学建模与运动控制研究[J]. 工程设计学报, 2023, 30(1): 73-81.

Hong-bin RUI,Lu-lu LI,Tian-ci WANG,Kai-wen DUAN. Research on dynamic modeling and motion control of amphibious turtle inspired robot[J]. Chinese Journal of Engineering Design, 2023, 30(1): 73-81.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.007        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I1/73

图1  两栖仿海龟机器人三维模型
参数数值
机体(长×宽×高)1 006×620×245
转架长度42
小腿长度430
脚轮直径150
表1  两栖仿海龟机器人的主要尺寸参数 (mm)
参数转腿缸支腿缸
工作压力/MPa1010
缸径/mm1625
杆径/mm810
最小安装距/mm210250
最大行程/mm110150
最大推力/N2 0104 906
最大拉力/N1 5074 121
表2  液压缸的主要技术性能参数
图2  支腿运动坐标系
图3  支腿的运动图解
图4  支腿各部件质心位置示意
部件j质量mj /kg质心位置Lmj /mm
10.530
21.5215
31.0430
40.8102
50.4
61.0122
70.5
表3  支腿各部件的质量及质心位置
图5  仿海龟爬行步态示意
图6  仿海龟爬行步态仿真结果
图7  机器人动力学模型仿真验证技术路线
图8  液压缸动力输出曲线对比
图9  单支腿的液压原理
图10  单支腿液压系统仿真模型
图11  基于机器人动力学方程的MATLAB计算模型
图12  纯位置控制模式下支腿关节转角的变化曲线
图13  力/位控制模式下支腿关节转角的变化曲线
图14  不同控制模式下液压缸动力输出曲线对比
1 牛少杰.河南因水灾遇难 99人[N].天津日报,2021-07-03(7).
NIU Shao-jie. Floods killed 99 people in Henan[N]. Tianjin Daily, 2021-07-03(7).
2 冯飞. 群策群力 协同推进 加快发展我国应急产业[J]. 中国应急管理,2015(11):58-59.
FENG Fei. Work together to accelerate the development of China’s emergency industry[J]. China Emergency Management, 2015(11): 58-59.
3 赵海朋,张凌燕.“十四五”时期我国机器人产业发展关键在于做好三个“关键”[J].机器人产业,2022(2):12-16.
ZHAO Hai-peng, ZHANG Ling-yan. The key to the development of China’s robot industry during the “14th Five-year Plan” period lies in doing well in three “keys”[J]. Robot Industry, 2022(2): 12-16.
4 UEDA K, GUARNIERI M, INOH T, et al. Development of HELIOS IX: an arm-equipped tracked vehicle[J]. Journal of Robotics and Mechatronics, 2011, 23(6): 1031-1040.
5 YAMAUCHI B M. PackBot: a versatile platform for military robotics[C]//Proceedings Volume 5422, Unmanned Ground Vehicle Technology VI, Orlando, Florida: SPIE, 2004: 228-237.
6 NEUMANN M, PREDKI T, HECKES L, et al. Snake-like, tracked, mobile robot with active flippers for urban search-and-rescue tasks[J]. Industrial Robot, 2013, 40(3): 246-250.
7 CASS S. DARPA unveils Atlas DRC robot[EB/OL]. (2013-09-22) [2022-05-17]. .
8 HUTTER M, GEHRING C, LAUBER A, et al. ANYmal-toward legged robots for harsh environments[J]. Advanced Robotics, 2017, 31(17): 918-931.
9 JUNG T, LIM J, BAE H, et al. Development of the humanoid disaster response platform DRC-HUBO+[J]. IEEE Transactions on Robotics, 2018, 34(1): 1-17.
10 SCHWARZ M, RODEHUTSKORS T, DROESCHEL D, et al. NimbRo rescue: solving disaster-response tasks with the mobile manipulation robot Momaro[J]. Journal of Field Robotics, 2017, 34(2): 400-425.
11 郭冰菁,韩建海,李向攀,等.步态康复机器人动力学李群李代数建模及仿真[J].系统仿真学报,2020,32(6):1126-1135.
GUO Bing-jing, HAN Jian-hai, LI Xiang-pan, et al. Dynamics modeling and simulation of gait rehabilitation robot based on Lie groups and Lie algebras theory[J]. Journal of System Simulation, 2020, 32(6): 1126-1135.
12 张琦,田梦倩,李伟强,等.复式套索人工肌肉驱动的下肢外骨骼的运动控制[J].机器人,2021,43(2):214-223.
ZHANG Qi, TIAN Meng-qian, LI Wei-qiang, et al. Motion control of a lower-limb exoskeleton actuated by compound tendon-sheath artificial muscles[J]. Robot, 2021, 43(2): 214-223.
13 宛敏红,周维佳,骆海涛,等.高精度重载搅拌摩擦焊机器人设计与运动控制[J].机器人,2018,40(6):817-824.
WAN Min-hong, ZHOU Wei-jia, LUO Hai-tao, et al. Design and motion control of the high precision heavy load friction stir welding robot[J]. Robot, 2018, 40(6): 817-824.
14 王学军,张帆.攀爬机器人动力学建模与分析[J/OL].机械科学与技术, (2021-12-20) [2022-05-17]. .
WANG Xue-jun, ZHANG Fan. Dynamic modeling and analysis of climbing robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering, (2021-12-20) [2022-05-17]. .
15 KOOLEN T, BERTRAND S, THOMAS G, et al. Design of a momentum-based control framework and application to the humanoid robot atlas[J]. International Journal of Humanoid Robotics, 2016, 13(1): 1650007.
16 芮宏斌,李路路,曹伟.两栖仿海龟机器人步态规划及分析[J/OL].机械科学与技术,(2021-10-21) [2022-05-17]. .
RUI Hong-bin, LI Lu-lu, CAO Wei. Gait planning and analysis of amphibious turtle inspired robot[J/OL]. Mechanical Science and Technology for Aerospace Engineering, (2021-10-21) [2022-05-17]. .
17 韩清凯,罗忠.机械系统多体动力学分析、控制与仿真[M].北京:科学出版社,2010:8-28.
HAN Qing-kai, LUO Zhong. Multi-body dynamics analysis, control and simulation of mechanical systems[M]. Beijing: Science Press, 2010: 8-28.
18 王晓磊,金振林,李晓丹,等.串并混联四足仿生机器人动力学建模与分析[J].农业机械学报,2019,50(4):401-412. doi:10.6041/j.issn.1000-1298.2019.04.046
WANG Xiao-lei, JIN Zhen-lin, LI Xiao-dan, et al. Dynamic modeling and analysis of serial-parallel hybrid quadruped bionic robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 401-412.
doi: 10.6041/j.issn.1000-1298.2019.04.046
19 李加启.高速四足机器人液压支腿动力学分析及运动控制[D].哈尔滨:哈尔滨工业大学,2019:22-61.
LI Jia-qi. Dynamic analysis and motion control of hydraulic leg in high speed quadruped robot[D]. Harbin: Harbin Institute of Technology, 2019: 22-61.
20 芮宏斌,李路路,曹伟,等.轮‒履‒腿复合仿生机器人步态规划及越障性能分析[J].工程设计学报,2022,29(2):133-142. doi:10.3785/j.issn.1006-754X.2022.00.031
RUI Hong-bin, LI Lu-lu, CAO Wei, et al. Gait planning and obstacle-surmounting performance analysis of wheel-track-leg composite bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 133-142.
doi: 10.3785/j.issn.1006-754X.2022.00.031
[1] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[2] 陈洪月,蔡明航,杨辛未,戴忠桓. 更换电铲钢丝绳专用机械臂架的结构及动力学分析[J]. 工程设计学报, 2023, 30(5): 590-600.
[3] 李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.
[4] 杜雪林,易文慧,邹家华,周灿,毛立,邓利诗,刘颖. 多关节蛇形机器人的结构设计和运动实现[J]. 工程设计学报, 2023, 30(4): 438-448.
[5] 杨展,李其朋,唐威,秦可成,陈岁繁,王铠迪,刘阳,邹俊. 小型陆空变形两栖机器人的设计与分析[J]. 工程设计学报, 2023, 30(3): 325-333.
[6] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[7] 郑小飞,黄镇海,马小龙,王建新,王斌锐. 基于SIMP方法的爬杆机器人结构优化与分析[J]. 工程设计学报, 2023, 30(3): 342-352.
[8] 李岳,邓云蛟,敖然,侯雨雷,曾达幸. 可适径调整管道清淤机器人结构设计与运动分析[J]. 工程设计学报, 2023, 30(3): 353-361.
[9] 陈贵亮,李子浩,蔡超,李永超,杨冬. 基于人体动力学分析的下肢外骨骼助力设计及机构优化[J]. 工程设计学报, 2023, 30(3): 362-371.
[10] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[11] 杨淦华,曾庆军,韩春伟,黄鑫,戴晓强. 人机交互遥操作机器人软体手位置跟踪设计与实现[J]. 工程设计学报, 2023, 30(2): 164-171.
[12] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[13] 谢红太,王红,柴伟. 新型高速列车风阻制动装置设计与仿真分析[J]. 工程设计学报, 2023, 30(2): 244-253.
[14] 段韦婕,秦慧斌,刘荣,李中一,白绍平. 可重构变刚度柔性驱动器的设计与性能分析[J]. 工程设计学报, 2023, 30(2): 262-270.
[15] 陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.