Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (2): 154-163    DOI: 10.3785/j.issn.1006-754X.2023.00.022
创新设计     
关节电机驱动六足机器人仿生结构设计与柔顺运动控制
丁杨(),张明路,焦鑫,李满宏()
河北工业大学 机械工程学院,天津 300401
Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors
Yang DING(),Minglu ZHANG,Xin JIAO,Manhong LI()
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(3884 KB)   HTML
摘要:

现有六足机器人在单足结构设计、机体布置形式及柔顺运动控制等方面存在不足,导致其地形适应能力不强,运动柔顺性能不高。为此,开展了典型六足生物——蚂蚁的观测实验,基于蚂蚁生理结构特征和驱动方式分析,提出了适用于六足机器人结构设计的基本原则;基于低惯量单足结构设计,通过优化机器人机体布局,提出了关节电机驱动六足机器人整体仿生结构;基于六足机器人直行和转向运动步态,规划了三角函数曲线与直线相结合的足端轨迹,提出了基于分级控制的六足机器人柔顺运动控制方法。样机实验结果表明,六足机器人结构设计合理,能够实现相对柔顺的直行和转向运动。研究结果可以为机器人仿生结构设计及柔顺运动控制提供重要参考。

关键词: 六足机器人仿生结构设计柔顺运动控制生物观测实验关节电机驱动    
Abstract:

The existing hexapod robots have shortcomings in single foot structure design, body layout and compliant motion control, resulting in weak terrain adaptability and low motion compliant performance. Therefore, observation experiment was conducted on a typical hexapod organism-ant. Based on the analysis of the physiological structure characteristic and driving mode of ant, basic principles applicable to the structure design of hexapod robot were proposed; based on the design of a low inertia single foot structure, an overall biomimetic structure of a hexapod robot driven by joint motors was proposed by optimizing the body layout of the robot; based on the gait of the straight and turning movements of the hexapod robot, a foot end trajectory combining trigonometric function curve and straight line was planned, and a compliant motion control method for the hexapod robot based on hierarchical control was proposed. The prototype experimental results showed that the hexapod robot had a reasonable structure design and could achieve relatively compliant straight and turning movements. The research results can provide important references for the design of robot biomimetic structure and compliant motion control.

Key words: hexapod robot    biomimetic structure design    compliant motion control    biological observation experiment    joint motor drive
收稿日期: 2022-07-12 出版日期: 2023-05-06
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(U1913211);河北省自然科学基金资助项目(F2021202016);河北省中央引导地方科技发展资金资助项目(226Z1801G);国家重点实验室优秀青年创新基金资助项目(EERI_0Y2021004)
通讯作者: 李满宏     E-mail: 13646193384@163.com;lmh9181219@163.com.cn
作者简介: 丁 杨(1998—),男,江苏南通人,硕士生,从事六足机器人结构设计与运动控制研究,E-mail: 13646193384@163.com, https://orcid.org/0000-0001-5950-6012
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁杨
张明路
焦鑫
李满宏

引用本文:

丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.

Yang DING,Minglu ZHANG,Xin JIAO,Manhong LI. Biomimetic structure design and compliant motion control for hexapod robot driven by joint motors[J]. Chinese Journal of Engineering Design, 2023, 30(2): 154-163.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.022        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I2/154

图1  蚂蚁生理结构
样本足股节长度/mm胫节长度/mm跗节长度/mm股节长度∶胫节长度∶跗节长度
样本1前足2.372.211.121.072∶1∶0.507
样本1中足2.562.541.211.008∶1∶0.476
样本1后足3.293.061.511.075∶1∶0.493
样本2前足2.041.911.011.068∶1∶0.529
样本2中足2.232.101.061.062∶1∶0.505
样本2后足2.432.311.151.057∶1∶0.498
样本3前足1.911.750.901.091∶1∶0.514
样本3中足1.981.860.981.065∶1∶0.527
样本3后足2.412.261.131.066∶1∶0.500
表1  蚂蚁各足足节长度
样本LM1LM2DM1DM2DM3
样本11.731.771.741.841.77
样本21.741.781.731.871.74
样本31.631.661.661.761.68
表2  蚂蚁各足的分布尺寸 (mm)
图2  蚂蚁单足驱动系统
图3  六足机器人整机结构
图4  六足机器人单足结构
图5  六足机器人机体布置方案
图6  六足机器人直行运动示意
图7  六足机器人转向运动示意
图8  六足机器人运动学坐标系示意
图9  六足机器人足端轨迹曲线
图10  六足机器人柔顺运动控制系统架构
图11  六足机器人样机
性能指标量值
质量15.4 kg
机体尺寸400 mm×300 mm×50 mm
股节长度175 mm
胫节长度200 mm
基节转角-1.2~1.2 rad
股节转角-0.8~1.5 rad
胫节转角0.5~2.1 rad
足端定位精度≤1 mm
表3  六足机器人性能指标
图12  六足机器人关节转角
图13  六足机器人直行运动过程中的机体高度
图14  六足机器人直行运动轨迹
图15  六足机器人转向运动轨迹
1 尤波,李鲲鹏,李佳钰,等.单腿失效的六足机器人失稳调整与容错步态设计[J].机械工程学报,2021,57(1):100-109. doi:10.3901/JME.2021.01.100
YOU B, LI K P, LI J Y, et al. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot[J]. Journal of Mechanical Engineering, 2021, 57(1): 100-109.
doi: 10.3901/JME.2021.01.100
2 陈斯琴,李思瑶,鲁志刚,等.六足机器人关键技术综述[J]. 机电工程技术,2022,51(11):146-152. doi:10.3969/j.issn.1009-9492.2022.11.036
CHEN S Q, LI S Y, LU Z G, et al. Review on key technology of the hexapod robot[J]. Mechanical & Electrical Engineering Technology, 2022, 51(11): 146-152.
doi: 10.3969/j.issn.1009-9492.2022.11.036
3 杨政,马春燕,窦银科,等.步履式全地形六足机器人[J]. 液压与气动,2022,46(1):109-116. doi:10.11832/j.issn.1000-4858.2022.01.013
YANG Z, MA C Y, DOU Y K, et al. Walking all-terrain hexapod robot[J]. Chinese Hydraulics & Pneumatics, 2022, 46(1): 109-116.
doi: 10.11832/j.issn.1000-4858.2022.01.013
4 XU S L, HE B, HU H M. Research on kinematics and stability of a bionic wall-climbing hexapod robot[J]. Applied Bionics and Biomechanics, 2019: 1-17.
5 张明路,王哲,李满宏,等.基于足端位置的六足机器人漫游地形感知与表征[J].机械工程学报,2021,57(19):48-60. doi:10.3901/jme.2021.19.005
ZHANG M L, WANG Z, LI M H, et al. Perception and representation of roaming terrain for a hexapod robot based on foot positions[J]. Journal of Mechanical Engineering, 2021, 57(19): 48-60.
doi: 10.3901/jme.2021.19.005
6 李满宏,张明路,张建华,等.基于增强学习的六足机器人自由步态规划[J].机械工程学报,2019,55(5):36-44. doi:10.3901/jme.2019.05.036
LI M H, ZHANG M L, ZHANG J H, et al. Free gait planning for a hexapod robot based on reinforcement learning[J]. Journal of Mechanical Engineering, 2019, 55(5): 36-44.
doi: 10.3901/jme.2019.05.036
7 刘蕴红,杨德晓.基于力反馈-中枢模式发生器模型的六足机器人控制器[J].科学技术与工程,2018,18(17):67-74. doi:10.3969/j.issn.1671-1815.2018.17.012
LIU Y H, YANG D X. A contoller for hexapod robot based on force feedlack-central pattem generator[J]. Science Technology and Engineering, 2018, 18(17): 67-74.
doi: 10.3969/j.issn.1671-1815.2018.17.012
8 芮宏斌,李路路,曹伟,等.轮-履-腿复合仿生机器人步态规划及越障性能分析[J].工程设计学报,2022,29(2):133-142. doi:10.3785/j.issn.1006-754X.2022.00.031
RUI H B, LI L L, CAO W, et al. Gait planning and obstacle-surmounting performance analysis of wheel-track-leg composite bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 133-142.
doi: 10.3785/j.issn.1006-754X.2022.00.031
9 王宇,周爽,李亚鑫.水陆两栖六足机器人的设计与性能评估[J].中国机械工程,2022,43(11): 274-282. doi:10.3969/j.issn.1004-132X.2022.17.009
WANG Y, ZHOU S, LI Y X. Design and performance evaluation of amphibious hexapod robots[J]. China Mechanical Engineering, 2022, 43(11): 274-282.
doi: 10.3969/j.issn.1004-132X.2022.17.009
10 朱国杰,田文凯,吕承哲,等.六足仿生机器人机构与控制系统设计[J].测控技术,2017,36(1):55-58. doi:10.3969/j.issn.1000-8829.2017.01.013
ZHU G J, TIAN W K, LÜ C Z, et al. Control system and mechanism design for hexapod robots[J]. Measurement & Control Technology, 2017, 36(1): 55-58.
doi: 10.3969/j.issn.1000-8829.2017.01.013
11 史延雷,张小俊,张明路.主-被动复合变刚度柔性关节设计与分析[J].机械工程学报,2018,54(3):55-62. doi:10.3901/jme.2018.03.055
SHI Y L, ZHANG X J, ZHANG M L. Design and analysis of an active-passive variable stiffness flexible joint[J]. Journal of Mechanical Engineering, 2018, 54(3): 55-62.
doi: 10.3901/jme.2018.03.055
12 曲祥旭,曹东兴,张姗.一种扭簧变刚度柔性关节的设计与研究[J].机械工程学报,2021,57(13):114-123. doi:10.3901/jme.2021.13.114
QU X X, CAO D X, ZHANG S. Design and research of a variable stiffness compliant joint based on torsional spring[J]. Journal of Mechanical Engineering, 2021, 57(13): 114-123.
doi: 10.3901/jme.2021.13.114
13 HUTTER M, GEHRING C, JUD D, et al. ANYmal: A highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway, USA: IEEE, 2016: 38-44.
14 KATZ B G. A low cost modular actuator for dynamic robots[D]. Boston, USA: Massachusetts Institute of Technology, 2018: 12-33.
15 陈媛.六足移动机器人的仿生机构设计与运动学分析[D].天津:河北工业大学,2015:19-52.
CHEN Y. Bionic mechanism design and kinematic analysis of hexapod mobile robot[D]. Tianjin: Hebei University of Technology, 2015: 19-52.
16 蒋晋东,郭伟,查富生,等.六足生物的反射运动机理实验研究[J].制造业自动化,2009,31(9):14-17. doi:10.3969/j.issn.1009-0134.2009.09.005
JIANG J D, GUO W, ZHA F S, et al. The experimental research on reflex theory of insects[J]. Manufacturing Automation, 2009, 31(9): 14-17.
doi: 10.3969/j.issn.1009-0134.2009.09.005
17 张雨航,钱亚伟,鲁航.六足全地形机器人结构设计[J]. 现代机械,2021(5):8-11.
ZHANG Y H, QIAN Y W, LU H. Structural design of a hexapod all-terrain robot[J]. Modern Machinery, 2021(5): 8-11.
18 徐海燕,姜树海,徐振亚,等.六足仿生虎甲虫机器人结构设计与静力学分析[J].现代制造工程,2018(11):54-59. doi:10.16731/j.cnki.1671-3133.2018.11.010
XU H Y, JIANG S H, XU Z Y, et al. Structural design and static analysis of a tiger-beetle-like hexapod robot[J]. Modern Manufacturing Engineering, 2018(11): 54-59.
doi: 10.16731/j.cnki.1671-3133.2018.11.010
19 宫丽男,庞在祥.基于ADAMS的六足仿生机器人结构设计及运动仿真[J].机械传动,2018,42(3):49-53.
GONG L N, PANG Z X. Structure design and kinematic simulation of biomimetic hexapod robot based on the ADAMS[J]. Journal of Mechanical Transmission, 2018, 42(3): 49-53.
20 乔栋,姚涛,王玉龙,等.六足机器人步态仿真与实验研究[J].机床与液压,2021,49(19):32-37. doi:10.3969/j.issn.1001-3881.2021.19.007
QIAO D, YAO T, WANG Y L, et al. Gait simulation and experimental study of hexapod robot based on virtual prototyping technology[J]. Machine Tool & Hydraulics, 2021, 49(19): 32-37.
doi: 10.3969/j.issn.1001-3881.2021.19.007
21 马慧姝,刘艳霞,方建军,等.四足仿生机器人仿生足端轨迹规划研究[J].东北师大学报(自然科学版),2019,51(3):66-71.
MA H S, LIU Y X, FANG J J, et al. Research on bionic foot-end trajectory planning for bionic quadruped robot[J]. Journal of Northeast Normal University (Natural Science Edition), 2019, 51(3): 66-71.
22 陈瑞晓.六足机器人步态规划与运动仿真[J].现代制造技术与装备,2020(6): 35-37. doi:10.3969/j.issn.1673-5587.2020.06.013
CHEN R X. Hexapod robot gait planning and motion simulation[J]. Modern Manufacturing Technology and Equipment, 2020(6): 35-37.
doi: 10.3969/j.issn.1673-5587.2020.06.013
[1] 李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.
[2] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[3] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[4] 陈贵亮,李子浩,蔡超,李永超,杨冬. 基于人体动力学分析的下肢外骨骼助力设计及机构优化[J]. 工程设计学报, 2023, 30(3): 362-371.
[5] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[6] 陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.
[7] 张卉,朱永飞,刘雪飞,徐向荣. 基于模糊迭代Q-学习的冶金工业机器人轨迹跟踪控制研究[J]. 工程设计学报, 2022, 29(5): 564-571.
[8] 陆古月,邢强,赵蔚,马磊,张小萍,王文波. 昆虫飞行信息自动化采集装置的设计[J]. 工程设计学报, 2022, 29(5): 607-615.
[9] 高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.
[10] 刘庆祥,郭冰菁,韩建海,李向攀,黄明祥. 体感交互式上肢镜像康复训练机器人系统[J]. 工程设计学报, 2022, 29(2): 143-152.
[11] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[12] 郑雨辰, 鞠锋, 王旦, 孙敬滨, 王亚明, 陈柏. 航空发动机叶片检测机器人的设计与控制研究[J]. 工程设计学报, 2021, 28(5): 625-632.
[13] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
[14] 朱锦翊, 张春燕, 卢晨晖. 基于螺旋理论的管道蠕动并联机构的奇异性研究[J]. 工程设计学报, 2021, 28(3): 287-295.
[15] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.