Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 370-383    DOI: 10.3785/j.issn.1006-754X.2022.00.028
建模、仿真、分析与决策     
大型深海AUV无动力螺旋下潜运动特性分析
高伟1,2,3(),张玮4,谷海涛1,2(),孟令帅1,2,高浩1,2,赵志超1,2,3
1.中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016
2.中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169
3.中国科学院大学,北京 100049
4.中国人民解放军海军研究院,北京 100161
Analysis of motion characteristics of large deep-sea AUV unpowered spiral diving
Wei GAO1,2,3(),Wei ZHANG4,Hai-tao GU1,2(),Ling-shuai MENG1,2,Hao GAO1,2,Zhi-chao ZHAO1,2,3
1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.Institute of Robotics and Intelligent Manufacturing Innovation, Chinese Academy of Sciences, Shenyang 110169, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
4.Naval Research Academy of PLA, Beijing 100161, China
 全文: PDF(9202 KB)   HTML
摘要:

为了合理地设计大型深海自主水下航行器(autonomous underwater vehicle, AUV),针对其无动力螺旋下潜时的静力配置问题展开研究,重点分析其无动力螺旋下潜运动特性。首先,基于拉格朗日方程推导了大型深海AUV的动力学模型,并利用CFD(computational fluid dynamics,计算流体动力学)软件对其直航试验、斜航试验、悬臂水池试验和平面运动机构试验进行数值模拟,通过最小二乘线性回归法拟合得到了相应的水动力系数;同时通过对比给定推力条件下AUV的直航速度验证了动力学模型的有效性。然后,基于所构建的动力学模型,利用MATLAB/Simulink和S函数建立了大型深海AUV的六自由度运动仿真模型,分析了其净负浮力、重心纵向位移和稳心高度与无动力螺旋下潜稳态参数之间的关系。最后,设计了1∶10的大型深海AUV缩比样机,通过水池试验验证了动力学仿真结果的正确性。结果表明:净负浮力作为大型深海AUV下潜时的主要动力来源,决定了AUV的下潜速度和偏航角速度;净负浮力和重心纵向位移与稳心高度的比值越大,AUV的垂向下潜速度越快,下潜至6 000 m深度的用时越短;由于该AUV的体量较大,其纵倾角主要由重心纵向位移与稳心高度的比值决定,压载质量对重心位置和转动惯量的影响几乎可以忽略。研究结果可为大型深海AUV无动力螺旋下潜时的静力配置提供参考。

关键词: 大型深海自主水下航行器动力学建模无动力螺旋下潜运动仿真水池试验    
Abstract:

In order to reasonably design the large deep-sea autonomous underwater vehicle (AUV), the static configuration problem of its unpowered spiral dive was studied, and the motion characteristics of its unpowered spiral dive were analyzed. Firstly, the dynamic model of large deep-sea AUV was derived based on the Lagrange equation and its direct route test, oblique towing test, cantilever pool test and plane motion mechanism test were numerically simulated by the CFD (computational fluid dynamics) software, and the corresponding hydrodynamic coefficients were fitted by the least square linear regression method; at the same time, the validity of the dynamic model was verified through comparing the route speed of this AUV under the given thrust condition. Then, based on the constructed dynamic model, the six-degree-of-freedom motion simulation model of large deep-sea AUV was established by using the MATLAB/Simulink and S-function, and the relationship between the net negative buoyancy, longitudinal displacement of gravity center, metacentric height and the unpowered spiral diving steady-state parameters was analyzed. Finally, a 1∶10 scaled-down prototype of large deep-sea AUV was designed, and the correctness of dynamic simulation results was verified by the pool test. The results showed that net negative buoyancy was the main power source of large deep-sea AUV, which determined the diving speed and yaw angular speed of the AUV; the greater the net negative buoyancy and the ratio of longitudinal displacement of gravity center to metacentric height, the faster the vertical diving speed of the AUV and the shorter the time to dive to a depth of 6 000 m; due to the large volume of this AUV, its longitudinal inclination angle was mainly determined by the ratio of longitudinal displacement of gravity center to metacentric height, and the influence of ballast mass on the gravity center position and moment of inertia could be almost ignored. The research results can provide a reference for the static configuration of large deep-sea AUV during unpowered spiral diving.

Key words: large deep-sea autonomous underwater vehicle    dynamic modeling    unpowered spiral diving    motion simulation    pool test
收稿日期: 2021-05-19 出版日期: 2022-07-05
CLC:  TP 242.3  
基金资助: 十三五装备预研项目(2020107/2002)
通讯作者: 谷海涛     E-mail: gaowei1@sia.cn;ght@sia.cn
作者简介: 高 伟(1996—),男,安徽合肥人,硕士生,从事水下机器人设计优化方法及其运动分析研究,E-mail:gaowei1@sia.cnhttps://orcid.org/0000-0002-6948-5961
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
高伟
张玮
谷海涛
孟令帅
高浩
赵志超

引用本文:

高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.

Wei GAO,Wei ZHANG,Hai-tao GU,Ling-shuai MENG,Hao GAO,Zhi-chao ZHAO. Analysis of motion characteristics of large deep-sea AUV unpowered spiral diving[J]. Chinese Journal of Engineering Design, 2022, 29(3): 370-383.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.028        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/370

图1  大型深海AUV的总体布局
图2  大型深海AUV坐标系构建
图3  大型深海AUV的流体计算域及边界条件
基本尺寸/m网格数量/万个CD?CD /%
0.88152.00.117 33-1.244
0.72233.80.115 69-1.418
0.68271.70.114 82-0.679
0.64310.50.114 15-0.587
0.60358.00.112 91-1.098
0.56419.20.112 70-0.186
0.52508.20.113 090.345
表1  大型深海AUV数值模拟的网格无关性验证结果
来流流速/m·s-1阻力D/N来流流速/m·s-1阻力D/N
0.257 218.111.286 0310.10
0.514 459.581.543 2433.65
0.771 6123.031.800 4576.55
1.028 8206.212.057 6739.32
表2  不同直航试验工况下大型深海AUV阻力的数值模拟结果
工况参数
水平面1)漂角变化:α=0°;β=0°,±2°,±4°,±6°,±8°,±10°,±12°,±14°和±16°;δbsr=
2)艉方向舵角变化:α=0°;β=0°;δb=δs=0°,δr=0°,±5°,±10°,±15°,±20°,±25°和±30°
垂直面1)攻角变化:α=0°,±2°,±4°,±6°,±8°,±10°,±12°,±14°和±16°;β=0°;δb=δs=δr=0°
2)艏升降舵角变化:α=0°;β=0°;δb=0°,±5°,±10°,±15°,±20°,±25°和±30°,δs=δr=0°
3)艉升降舵角变化:α=0°;β=0°;δb=0°,δs=0°,±5°,±10°,±15°,±20°,±25°和±30°,δr=0°
表3  大型深海AUV的斜航试验数值模拟工况设计
图4  大型深海AUV斜航试验数值模拟结果(部分)
工况参数
水平面α=0°;β=-3°,0°,3°,6°,9°和12°;δbsr=0°R=2.5lt,5lt,10lt,15lt,20lt,30lt,50lt和-50lt
垂直面α=0°,±3°,±6°,±9°和±12°;β=0°;δbsr=0°R=2.5lt,5lt,10lt,15lt,20lt,30lt,50lt和-50lt
空间α=0°;β=0°,±2°,±4°,±6°,±8°,±10°,±12°,±14°和±16°;δbsr=0°p=0 rad·s-1R=20lt,30lt,40lt,50lt,+和-50lt
表4  大型深海AUV的悬臂水池试验数值模拟工况设计
图5  大型深海AUV悬臂水池试验数值模拟结果(部分)
图6  纯横荡运动过程中大型深海AUV所受横向力的变化规律
图7  纯横荡运动过程中大型深海AUV所受偏航力矩的变化规律
振荡频率/HzYv˙/kgNv˙/kg·m
平均值-5 838.787 5-28 035.394 1
0.10-6 695.222 8-38 568.912 2
0.15-5 514.450 4-26 142.592 2
0.20-5 306.689 4-19 394.677 8
表5  不同振荡频率下大型深海AUV的加速度相关水动力系数拟合结果
水动力系数量值

黏性水动力

相关系数

KD0=-194.004?3?kg/mKD=-4?353.732?4?kg/(m?rad2)
Kβ=-5?707.978?0?kg/m?rad
KL0=-9.197?3?kg/mKL=-8?486.898?8?kg/m?rad

黏性水动力矩

相关系数

KMY=-1?323.630?1?kg/radKp=-5?292.450?4?kg?s/rad
KM0=206.040?2?kgKM=-15?338.366?7?kg/radKq=-170?274.832?3?kg?s/rad2
KMZ=11?491.559?6?kg/radKr=-114?417.337?7?kg?s/rad2
加速度相关系数Xu˙=-2?707.241?4?kgYv˙=-5?838.787?5?kgYr˙=30?017.879?7?kg?m/radZw˙=-10?159.604?0?kgMw˙=42?912.398?6?kg?mMq˙=444?749.939?5?kg?m2/rad2Nv˙=-28?035.394?1?kg?mNr˙=-269?033.762?9?kg?m2/rad
舵角相关系数Xδbδb=-799.853?6?kg/mXδsδs=-461.005?4?kg/mXδrδr=-489.803?1?kg/mYδr=-1?098.460?8?kg?m/rad2Zδb=-2?373.612?2?kg/m?radZδs=-1?129.144?6?kg/m?radMδb=15?443.455?8?kg/radMδs=-8?494.593?7?kg/radNδr=7?819.812?8?kg/rad
表6  大型深海AUV水动力系数计算结果
图8  大型深海AUV的六自由度运动仿真模型
图9  不同推力下大型深海AUV的直航速度对比
图10  大型深海AUV无动力螺旋下潜运动轨迹
图11  大型深海AUV无动力螺旋下潜状态参数随时间的变化规律
图12  净负浮力对大型深海AUV无动力螺旋下潜稳态参数的影响
图13  重心纵向位移对大型深海AUV无动力螺旋下潜稳态的影响
图14  稳心高度对大型深海AUV无动力螺旋下潜稳态参数的影响
图15  大型深海AUV缩比样机
图16  大型深海AUV缩比样机的电子密封舱
图17  大型深海AUV缩比样机水池试验现场
工况参数数值
净负浮力W/N2.5,5.0,7.5,10.0
艉方向舵角δr/(°)16,20,24
表7  大型深海AUV缩比样机的无动力螺旋下潜水池试验工况
图18  大型深海AUV缩比样机无动力螺旋下潜过程( W=7.5 N, δr=24°)
图19  不同净负浮力下大型深海AUV缩比样机无动力螺旋下潜状态参数随时间的变化规律(δr =20°)
1 蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科技出版社,2000:1-30.
JIANG Xin-song, FENG Xi-sheng, WANG Di-tang. Unamnned underwater vehicles[M]. Shenyang: Liaoning Science and Technology Press, 2000: 1-30.
2 钱东,唐献平,赵江.UUV技术发展与系统设计综述[J]. 鱼雷技术,2014,22(6):401-414. doi:10.3969/j.issn.1673-1948.2014.06.001
QIAN Dong, TANG Xian-ping, ZHAO Jiang. Overview of technology development and system design of UUVs[J]. Torpedo Technology, 2014, 22(6): 401-414.
doi: 10.3969/j.issn.1673-1948.2014.06.001
3 李硕,刘健,徐会希,等.我国深海自主水下机器人研究现状[J].中国科学:信息科学,2018,48(9):1152-1164.doi:10.1360/n112017-00264
LI Shuo, LIU Jian, XU Hui-xi, et al. Research status of autonomous underwater vehicles in China[J]. Scientia Sinica Informationis, 2018, 48(9): 1152-1164.
doi: 10.1360/n112017-00264
4 United States Navy. Autonomous undersea vehicle requirement for 2025[R]. Washington: United States Department of Defense, 2016.
5 顾建农,李启杰,高磊,等.水下滑翔机运动特性建模与仿真[J].华中科技大学学报(自然科学版),2016,44(1):76-80. doi:10.13245/j.hust.160116
GU Jian-nong, LI Qi-jie, GAO Lei, et al. Modeling and simulation for the motion performance of underwater glider[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2016, 44(1): 76-80.
doi: 10.13245/j.hust.160116
6 孙秀军,王雷,桑宏强.Petrel-Ⅱ 200水下滑翔机动力学建模及仿真[J].水下无人系统学报,2019,27(5):480-487. doi:10.11993/j.issn.2096-3920.2019.05.002
SUN Xiu-jun, WANG Lei, SANG Hong-qiang. Dynamic modeling and simulation of underwater glider Petrel-Ⅱ 200[J]. Journal of Unmanned Undersea Systems, 2019, 27(5): 480-487.
doi: 10.11993/j.issn.2096-3920.2019.05.002
7 于鹏垚,王天霖,甄春博,等.水下滑翔机的稳态运动速度分析[J].哈尔滨工程大学学报,2018,39(11):1767-1772. doi:10.11990/jheu.201705030
YU Peng-yao, WANG Tian-lin, ZHEN Chun-bo, et al. Analysis of the steady-state motion velocity of an underwater glider[J]. Journal of Harbin Engineering University, 2018, 39(11): 1767-1772.
doi: 10.11990/jheu.201705030
8 ZHANG Shao-wei, YU Jian-cheng, ZHANG Ai-qun, et al. Sprialing motion of underwater gliders: modeling, analysis, and experiment results[J]. Ocean Engineering, 2013, 60: 1-13. doi:10.1016/j.oceaneng.2012.12.023
doi: 10.1016/j.oceaneng.2012.12.023
9 CAO Jun-jun, CAO Jun-liang, YAO Bao-heng, et al. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider[C]//OCEANS 2015-Genova, Genova, May 18-21, 2015. doi:10.1109/oceans-genova.2015.7271365
doi: 10.1109/oceans-genova.2015.7271365
10 施生达.潜艇操纵性[M].北京:国防工业出版社,1995:10-231.
SHI Sheng-da. Submarine’s maneuverability[M]. Beijing: National Defense Industry Press, 1995: 10-231.
11 GRAVER J G. Underwater gliders: dynamics, control and design[D]. Princeton: Princeton University, 2005: 42-144.
12 SIEMENS. STAR-CCM+ v13.02 user’s guide[R]. Plano: Siemens PLM Software Inc., 2018.
13 胡志强.海洋机器人水动力数值计算方法及其应用研究[D].北京:中国科学院大学,2013:33-71.
HU Zhi-qiang. Numerical calculation methods for hydrodynamics of unmanned marine vehicles and their application[D]. Beijing: University of Chinese Academic of Sciences, 2013: 33-71.
[1] 赵迪,陈果,陈小利,王熊锦. 轮式搜救机器人地形自适应机构设计及越障性能分析[J]. 工程设计学报, 2023, 30(5): 579-589.
[2] 李科军,陈淼林,王江银,姚学军,邓旻涯,高龙. 湿喷机液压制动系统制动阀性能研究[J]. 工程设计学报, 2022, 29(5): 579-586.
[3] 赵富强,杜特,常宝玉,牛志刚. 肢腿履带足机构抬腿工况动力学分析与实验研究[J]. 工程设计学报, 2022, 29(4): 474-483.
[4] 李科军,邓旻涯,黄文静,张宇,曾家旺,陈淼林. 混凝土湿喷机摆动系统工作特性研究[J]. 工程设计学报, 2022, 29(4): 519-526.
[5] 王君, 冯康瑞, 程群超, 李文涛, 汪泉. 计算机辅助Watt型平面六连杆机构分支自动识别[J]. 工程设计学报, 2019, 26(5): 497-505.
[6] 李磊, 肖世德, 董庆丰, 李兴坤. 一种大型球罐内部检修工作台的设计与分析[J]. 工程设计学报, 2018, 25(2): 131-141.
[7] 孟令帅, 林扬, 谷海涛, 孙凯. 回转形AUV水下通用对接装置的设计与实现[J]. 工程设计学报, 2017, 24(4): 387-394.
[8] 胡仕成,宋晶晶,王祥军. 混凝土湿喷机臂架系统的动力学建模与分析[J]. 工程设计学报, 2014, 21(3): 227-234.
[9] 林学杰, 唐进元. 一种矿车超速感应机构的键合图建模与仿真研究[J]. 工程设计学报, 2010, 17(3): 207-210.
[10] 任云鹏, 张天侠, 陈希红, 张计磊, 张红军, 宋连国, 韩清凯, 闻邦椿. 基于虚拟样机技术的万吨压机锻造操作机的运动学仿真分析[J]. 工程设计学报, 2008, 15(2): 101-104.
[11] 罗传勇, 李超, 王宏力. 平流层验证飞艇纵向动力学建模及其状态观测器设计[J]. 工程设计学报, 2006, 13(5): 307-311.