Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 384-393    DOI: 10.3785/j.issn.1006-754X.2022.00.044
建模、仿真、分析与决策     
机械式自动垂直钻具执行机构内部流场规律研究
马超群1,2(),张凯1,2(),柴麟1,2,刘宝林1,2,周琴1,2
1.中国地质大学(北京) 工程技术学院,北京 100083
2.自然资源部深部地质钻探技术重点实验室,北京 100083
Research on internal flow field law of mechanical automatic vertical drilling tool actuator
Chao-qun MA1,2(),Kai ZHANG1,2(),Lin CHAI1,2,Bao-lin LIU1,2,Qin ZHOU1,2
1.School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
2.Key Laboratory of Deep GeoDrilling Technology, Ministry of Natural Resources, Beijing 100083, China
 全文: PDF(2624 KB)   HTML
摘要:

在科学钻探中,利用自动垂直钻井技术能够有效控制井斜。但是,现有机械式自动垂直钻具的执行机构需要较大排量的泵机来提供动力。若要降低排量,则要求执行机构的内部结构有良好的保压效果。为解决上述问题,提出一种内部带有泄流缝隙的新型执行机构,以提升其保压性能,并利用CFD(computational fluid dynamics,计算流体动力学)方法对其内部流体区域的流线分布进行模拟,分析泄流缝隙对流体区域压强产生的影响,以验证利用缝隙泄流实现保压的可行性;同时,通过对泄流缝隙宽度、长度等参数的敏感性分析,得到不同参数对新型执行机构保压效果的影响。结果表明,在泵机排量较小的条件下,新型执行机构仍具有良好的保压效果,对保压效果影响最明显的因素为泄流缝隙宽度;当泄流缝隙宽度小于0.2 mm时,该执行机构内部流体区域的整体压强较大,即其保压效果良好。由此可知,开设泄流缝隙可实现执行机构的性能优化,这对进一步提升机械式自动垂直钻具的纠斜能力具有重要意义。

关键词: 自动垂直钻具泄流缝隙内部流场规律分析    
Abstract:

In scientific drilling, the automatic vertical drilling technology can effectively control well deviation. However, the actuator of existing mechanical automatic vertical drilling tool needs a pump with large displacement to provide power. If the displacement is to be reduced, the internal structure of the actuator is required to have a good pressure maintaining effect. In order to solve the above problem, a new actuator with discharge gaps inside was proposed to improve its pressure retention performance, and the streamline distribution in its internal fluid zone was simulated by using the CFD (computational fluid dynamics) method to analyze the influence of discharge gaps on the pressure in the fluid zone, so as to verify the feasibility of using the gap discharge to achieve pressure retention; at the same time, through the sensitivity analysis of parameters such as the width and length of the discharge gap, the influence of different parameters on the pressure retention effect of the new actuator was obtained. The results showed that under the condition of small pump displacement, the new actuator still had good pressure retention effect, and the most obvious factor affecting the pressure retention effect was the discharge gap width; when the discharge gap width was less than 0.2 mm, the overall pressure of fluid zone in this actuator was small, that was, its pressure retention effect was good. It can be seen that the performance optimization of the actuator can be realized by setting up the discharge gap, which is of great significance to further improve the inclination correction ability of the mechanical automatic vertical drilling tool.

Key words: automatic vertical drilling tool    discharge gap    internal flow field    law analysis
收稿日期: 2021-09-03 出版日期: 2022-07-05
CLC:  TH 128  
基金资助: 国家重点研发计划资助项目(2018YFC0603405);国家重点研发计划战略性国际科技创新合作重点专项(2016YFE0202200)
通讯作者: 张凯     E-mail: 804771505@qq.com;zhangkai66@cugb.edu.cn
作者简介: 马超群(1997—),男,河北张家口人,硕士生,从事自动垂直钻井技术研究,E-mail:804771505@qq.comhttps://orcid.org/0000-0002-6666-2387
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马超群
张凯
柴麟
刘宝林
周琴

引用本文:

马超群,张凯,柴麟,刘宝林,周琴. 机械式自动垂直钻具执行机构内部流场规律研究[J]. 工程设计学报, 2022, 29(3): 384-393.

Chao-qun MA,Kai ZHANG,Lin CHAI,Bao-lin LIU,Qin ZHOU. Research on internal flow field law of mechanical automatic vertical drilling tool actuator[J]. Chinese Journal of Engineering Design, 2022, 29(3): 384-393.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.044        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/384

图1  机械式自动垂直钻具结构示意
图2  机械式自动垂直钻具纠斜原理
图3  新型执行机构结构剖面图
图4  巴掌关键表面及其对应的执行机构壳体表面命名示意
图5  新型执行机构的工作原理示意
图 6  新型执行机构内部流体区域示意
图7  新型执行机构内部流体区域三维模型尺寸参数设置
图8  巴掌打开角度示意
图9  流体区域平均压强随巴掌打开角度的变化曲线
图10  巴掌打开角度不同时流体区域流场流线对比
图11  巴掌完全打开时流体区域的压强云图
图12  巴掌完全打开时流体区域平均压强的变化曲线
图13  流体区域平均压强随入口直径的变化曲线
图14  流体区域入口角度示意
图15  流体区域平均压强随入口角度的变化曲线
图16  流体区域平均压强随泄流缝隙宽度的变化曲线
图17  泄流缝隙长度示意
图18  流体区域平均压强随泄流缝隙长度的变化曲线
1 叶建良,张伟,谢文卫.我国实施大洋钻探工程的初步设想[J].探矿工程(岩土钻掘工程),2019,46(2):1-8. doi:10.12143/j.tkgc.2019.02.001
YE Jian-liang, ZHANG Wei, XIE Wen-wei. Preliminary thoughts on implementation of the ocean drilling project in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2019, 46(2): 1-8.
doi: 10.12143/j.tkgc.2019.02.001
2 吴旭东.井斜原因及其危害浅谈[J].科技信息,2012(6):377. doi:10.3969/j.issn.1001-9960.2012.06.333
WU Xu-dong. Discussion on the causes and hazards of borehole deviation[J]. Science and Technology Information, 2012(6): 377
doi: 10.3969/j.issn.1001-9960.2012.06.333
3 CHUR C, OPPELT J. Vertical drilling technology: a milestone in directional drilling[C]//SPE/IADC Drilling Conference, Amsterdam, Feb. 22-25, 1993. doi:10.2118/25759-ms
doi: 10.2118/25759-ms
4 CLAUS C, THOMAS B, BERNHARD E, et al. KTB-4 years experience at the limits of drilling technology[C]//SPE/IADC Drilling Conference, Amsterdam, Feb. 28-Mar. 2, 1995.
5 刘文忠,易炳刚,范宇,等.VertiTrak垂直钻井技术在高陡构造天东004-X3井的应用[J].钻采工艺,2010,33(6):36-39. doi:10.3969/j.issn.1006-768X.2010.06.000
LIU Wen-zhong, YI Bing-gang, FAN Yu, et al. Application of VertiTrak in the high-steep structures of Tiandong004-X3 well[J]. Drilling and Production Technology, 2010, 33(6): 36-39.
doi: 10.3969/j.issn.1006-768X.2010.06.000
6 张锦虹,宋玥,刘书勤,等.Power-V在克深102井膏盐岩层中的应用[J].石油钻采工艺,2015(6):13-17. doi:10.13639/j.odpt.2015.06.004
ZHANG Jin-hong, SONG Yue, LIU Shu-qin, et al. Application of Power-V in gypsum-salt rock [J]. Oil Drilling & Production Technology, 2015(6): 13-17.
doi: 10.13639/j.odpt.2015.06.004
7 王闻涛,王进全,王小通,等.全旋转推靠式自动垂直钻井工具的研制[J].石油机械,2015,43(8):47-50. doi:10.16082/j.cnki.issn.1001-4578.2015.08.010
WANG Wen-tao, WANG Jin-quan, WANG Xiao-tong, et al. Development of full rotation and push-the-bit type automatic vertical drilling tool[J]. China Petroleum Machinery, 2015, 43(8): 47-50.
doi: 10.16082/j.cnki.issn.1001-4578.2015.08.010
8 韩来聚,倪红坚,赵金海,等.机械式自动垂直钻井工具的研制[J].石油学报,2008,29(5):766-768. doi:10.7623/syxb200805025
HAN Lai-ju, NI Hong-jian, ZHAO Jin-hai, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008, 29(5): 766-768.
doi: 10.7623/syxb200805025
9 李立鑫,薛启龙,刘宝林,等.机械式静态双层推靠自动垂直钻具设计[J].中国石油大学学报(自然科学版),2017,41(4):91-98. doi:10.3969/j.issn.1673-5005.2017.04.012
LI Li-xin, XUE Qi-long, LIU Bao-lin, et al. A static mechanical automatic vertical drilling tool with double-layer positive pushing pistons for slim well drilling[J]. Journal of China University of Petroleum (Natural Science Edition), 2017, 41(4): 91-98.
doi: 10.3969/j.issn.1673-5005.2017.04.012
10 柴麟,张凯,刘宝林,等.自动垂直钻井工具分类及发展现状[J].石油机械,2020,48(1):1-11. doi:10.16082/j.cnk.ssn.1001-4578.2020.01.001
CHAI Lin, ZHANG Kai, LIU Bao-lin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1-11.
doi: 10.16082/j.cnk.ssn.1001-4578.2020.01.001
11 柴麟,张凯,张耀澎,等.小直径垂钻工具推力执行机构性能测试[J].探矿工程(岩土钻掘工程),2020,47(4):87-93. doi:10.12143/j.tkgc.2020.04.013
CHAI Lin, ZHANG Kai, ZHANG Yao-peng, et al. Performance test of the pushing actuator of the small diameter vertical drilling tool[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2020, 47(4): 87-93.
doi: 10.12143/j.tkgc.2020.04.013
12 冯定,王鹏,张红,等.旋转导向工具研究现状及发展趋势[J].石油机械,2021,49(7):8-15. doi:10.16082/j.cnki.issn.1001-4578.2021.07.002
FENG Ding, WANG Peng, ZHANG Hong, et al. Research status and development trend of rotary steerable system tool[J]. China Petroleum Machinery, 2021, 49(7): 8-15.
doi: 10.16082/j.cnki.issn.1001-4578.2021.07.002
13 王万宏.缝隙引流叶轮对低比转速离心泵性能的影响机理研究[D].镇江:江苏大学,2020:27-44. doi:10.37434/as2020.06.05
WANG Wan-hong. Mechanistic study of the effect of gap drainage impellers on the performance of low specific speed centrifugal pumps[D]. Zhenjiang: Jiangsu University, 2020: 27-44.
doi: 10.37434/as2020.06.05
14 赵伟国,路佳佳,赵富荣.基于缝隙射流原理的离心泵空化控制研究[J].浙江大学学报(工学版),2020,54(9):1785-1794. doi:10.3785/j.issn.1008-973X.2020.09.015
ZHAO Wei-guo, LU Jia-jia, ZHAO Fu-rong. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1785-1794.
doi: 10.3785/j.issn.1008-973X.2020.09.015
15 刘汉儒,岳少原,王掩刚,等.串列叶栅缝隙射流对分离流动及叶栅性能影响的研究[J].推进技术,2018,39(12):2728-2736. doi:10.13675/j.cnki.tjjs.2018.12.011
LIU Han-ru, YUE Shao-yuan, WANG Yan-gang, et al. Investigation for effects of slot jet of tandem cascade on separation flow and cascade performance[J]. Journal of Propulsion Technology, 2018, 39(12): 2728-2736.
doi: 10.13675/j.cnki.tjjs.2018.12.011
16 柴麟,张凯,刘宝林,等.一种小直径取心式垂直钻井工具推力执行机构:CN201921119847.6[P].2020-06-05.
CHAI Lin, ZHANG Kai, LIU Bao-lin, et al. Thrust actuator of a small diameter coring vertical drilling tool: CN201921119847.6[P]. 2020-06-05.
17 李立鑫,薛启龙,刘宝林,等.机械式自动垂直钻具的纠斜行为及研究进展[J].西安石油大学学报(自然科学版),2018,33(1):90-97. doi:10.3969/j.issn.1673-064X.2018.01.015
LI Li-xin, XUE Qi-long, LIU Bao-lin, et al. Straightening behavior analysis and research progress of mechanical automatic vertical drilling tools[J]. Journal of Xi’an Shiyou University (Natural Science), 2018, 33(1): 90-97.
doi: 10.3969/j.issn.1673-064X.2018.01.015
18 李秋敏,刘白雁,陈新元,等.自动垂直钻具井下流场特性仿真分析[J].石油矿场机械,2008,37(8):10-13. doi:10.3969/j.issn.1001-3482.2008.08.002
LI Qiu-min, LIU Bai-yan, CHEN Xin-yuan, et al. Simulation analysis on the characteristics of the down-hole flow field in the automatic anti-deviation drilling system[J]. Oil Field Equipment, 2008, 37(8): 10-13.
doi: 10.3969/j.issn.1001-3482.2008.08.002
19 王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004:185-187.
WANG Fu-jun. Computational fluid dynamics analysis: principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 185-187.
20 韩占忠,王敬,兰小平.Fluent:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2010:138-140.
HAN Zhan-zhong, WANG Jing, LAN Xiao-ping. Fluent: example and application of fluid engineering simulation[M]. Beijing: Beijing Institute of Technology Press, 2010: 138-140.
21 CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. doi:10.1029/2007gl030812
doi: 10.1029/2007gl030812
22 ZHENG L, WANG W, LI S. Feature-based streamline selection method for 2D flow fields[C]//2015 14th International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics), Xi’an, Aug. 26-28, 2015. doi:10.1109/cadgraphics.2015.48
doi: 10.1109/cadgraphics.2015.48
23 SALZBRUNN T, SCHEUERMANN G. Streamline predicates[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6): 1601-1612. doi:10. 1109/tvcg.2006.104
doi: 10. 1109/tvcg.2006.104
24 杨文哲,苏晓磊,刘毅.卧轮式分级机内流场的“双旋涡”分布特性[J].工业技术创新,2021,8(2):111-118. doi:10.14103/j.issn.2095-8412.2021.04.020
YANG Wen-zhe, SU Xiao-lei, LIU Yi. The "Double Vortex" distribution characteristics of the flow field in the horizontal turbo air classifier[J]. Industrial Technology Innovation, 2021, 8(2): 111-118.
doi: 10.14103/j.issn.2095-8412.2021.04.020
25 张龙,张凯,柴麟,等.机械式自动垂直钻具上盘阀开口角度的优化分析[J].工程设计学报,2021,28(1):72-79,88. doi:10.3785/j.issn.1006-754X.2021.00.004
ZHANG Long, ZHANG Kai, CHAI Lin, et al. Optimization analysis of opening angle of upper disc valve of mechanical automatic vertical drilling tool[J]. Chinese Journal of Engineering Design, 2021, 28(1): 72-79, 88.
doi: 10.3785/j.issn.1006-754X.2021.00.004
26 张耀澎.垂直钻进系统推靠机构设计及模拟试验研究[D].北京:中国地质大学,2020:37-38.
ZHANG Yao-peng. Design and simulation test of a pushing unit of push-the-bit vertical drilling system[D]. Beijing: China University of Geosciences, 2020: 37-38.
27 卢志芳,刘白雁.自动垂直钻具液控导向机构的研制与动力学特性分析[J].机床与液压,2009,37(11):74-77. doi:10.3969/j.issn.1001-3881.2009.11.024
LU Zhi-fang, LIU Bai-yan. Development of hydraulic controlled steerable mechanism of automatic vertical drilling tools and its dynamics characteristic analysis[J]. Machine Tool and Hydraulic, 2009, 37(11): 74-77.
doi: 10.3969/j.issn.1001-3881.2009.11.024
[1] 李然然, 张凯, 柴麟, 张龙, 刘宝林, 李国民. 黏滑振动下机械式自动垂直钻具稳定平台的控制性能研究[J]. 工程设计学报, 2021, 28(6): 746-757.
[2] 张龙, 张凯, 柴麟, 李国民, 周琴, 刘宝林, 李然然. 机械式自动垂直钻具上盘阀开口角度的优化分析[J]. 工程设计学报, 2021, 28(1): 72-79.