Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (1): 20-31    DOI: 10.3785/j.issn.1006-754X.2023.00.016
创新设计     
一种具有力检测机制的新型血管介入手术机器人
陈翼楠(),蒲志新(),郑珍妮
辽宁工程技术大学 机械工程学院,辽宁 阜新 123000
A novel vascular interventional surgery robot with force detection mechanism
Yi-nan CHEN(),Zhi-xin PU(),Zhen-ni ZHENG
College of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China
 全文: PDF(6561 KB)   HTML
摘要:

为了在机器人辅助远程介入手术中实现向医生提供高精度的力反馈,设计了一种具有力检测机制的新型血管介入手术机器人,其是一个主从控制系统,包括一个操作方便的主端装置和一个递送导丝/导管的从端装置。首先,设计了血管介入手术机器人的力检测机制,以实现轴向近端力的精准测量和径向夹紧力的感知。然后,基于血管介入手术机器人的动力学分析,设计了具有在线整定参数功能的模糊PID(proportional integral derivative,比例积分微分)控制器,以提高从端装置的递送精度和抗干扰能力,同时选择阶跃信号对所设计的模糊PID控制器进行仿真验证。最后,搭建血管介入手术机器人物理样机,并开展主从运动跟踪实验和轴向近端力、径向夹紧力检测评估实验。实验结果表明,该血管介入手术机器人具有[-0.31, 0.25] mm的运动跟踪误差,可检测平均误差为0.12 N的轴向近端力以及可感知0.47~4 N的径向夹紧力。研究结果验证了所设计血管介入手术机器人的鲁棒性以及其力检测机制的可行性,可为同类产品的设计和改进提供参考依据。

关键词: 血管介入手术机器人模糊PID控制器运动跟踪力检测    
Abstract:

In order to provide high-precision force feedback to doctors in robot-assisted remote interventional surgery, a novel vascular interventional surgery robot with force detection mechanism is designed. It is a master-slave control system, including a convenient master device and a slave device for delivering guide wire/catheter. Firstly, the force detection mechanism of the vascular interventional surgery robot was designed to realize the accurate measurement of axial proximal force and the perception of radial clamping force. Then, based on the dynamics analysis of the vascular interventional surgery robot, a fuzzy PID (proportional integral derivative) controller with online parameter setting function was designed to improve the delivery accuracy and anti-interference ability of the slave device. At the same time, the step signal was selected to verify the fuzzy PID controller. Finally, the physical prototype of vascular interventional surgery robot was built, and the master-slave motion tracking experiment and the detection and evaluation experiment of axial proximal force and radial clamping force were carried out. The experimental results showed that the vascular interventional surgery robot had a motion tracking error of [?0.31, 0.25] mm, could detect the axial proximal force with an average error of 0.12 N, and could sense the radial clamping force of 0.47-4 N. The research results verified the robustness of the designed vascular interventional surgery robot and the feasibility of its force detection mechanism, which can provide a reference for the design and improvement of similar products.

Key words: vascular interventional surgery robot    fuzzy PID controller    motion tracking    force detection
收稿日期: 2022-05-04 出版日期: 2023-03-06
CLC:  TP 242.3  
通讯作者: 蒲志新     E-mail: 986395488@qq.com;puzhixin@126.com
作者简介: 陈翼楠(1997—),男,辽宁锦州人,硕士生,从事机器人控制研究,E-mail: 986395488@qq.com,https://orcid.org/0000-0001-7920-461X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈翼楠
蒲志新
郑珍妮

引用本文:

陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.

Yi-nan CHEN,Zhi-xin PU,Zhen-ni ZHENG. A novel vascular interventional surgery robot with force detection mechanism[J]. Chinese Journal of Engineering Design, 2023, 30(1): 20-31.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.016        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I1/20

图1  血管介入手术机器人系统原理
图2  主端装置结构示意
图3  从端装置结构示意
图4  夹持装置结构示意
图5  轴向近端力检测原理
图6  轴向近端力检测流程
图7  径向夹紧力检测原理
图8  径向夹紧力检测流程
图9  从端装置轴向平移的动力学模型
参数数值
J/(kg?m2)0.92×10-6
J/(kg?m2)1.1×10-6
p/mm6
ms/kg0.808
η10.9
B0.245×10-6
μv0.2
μc0.1
表1  从端装置轴向平移的动力学参数
图10  从端装置径向旋转的动力学模型
参数数值
J/(kg?m2)0.92×10-6
J1/(kg?m2)0.217×10-6
J2/(kg?m2)0.451×10-6
J3/(kg?m2)0.819×10-6
J/(kg?m2)1.096×10-6
J/(kg?m2)4.047×10-5
B0.245×10-6
i10.8
i20.893
表2  从端装置径向旋转的动力学参数
图11  常规PID控制器框图
图12  模糊PID控制器框图
图13  模糊控制结构框图
eec
NBNMNSZEPSPMPB
NBPB/NB/PSPB/NB/NSPM/NM/NBPM/NM/NBPS/NS/NMZE/ZE/NMZE/ZE/PS
NMPB/NB/PSPB/NB/NSPM/NM/NBPM/NS/NMPS/NS/NSZE/ZE/NSNS/ZE/ZE
NSPM/NB/ZEPM/NM/NSPM/NS/NMPS/NS/NMZE/ZE/NSNS/PS/NSNS/PS/ZE
ZEPM/NM/ZEPM/NM/NSPS/NS/NSZE/ZE/NSNS/PS/NSNM/PM/NSNM/PM/ZE
PSPS/NM/ZEPS/NS/ZEZE/ZE/ZENS/PS/ZENS/PS/ZENM/PM/ZENM/PB/NS
PMPS/ZE/PBZE/ZE/PSNS/PS/PMNM/PS/PSNM/PM/PSNM/PB/PSNB/PB/PB
PBZE/ZE/PBZE/ZE/PMNM/PS/PMNM/PM/PMNM/PS/PSNB/PB/PSNB/PB/PB
表3  输出变量ΔKP 、ΔKI 和ΔKD 的模糊控制规则
图14  输出变量∆KP、∆KI和∆KD的模糊控制面
图15  MATLAB/Simulink环境下的模糊PID控制器
图16  不同控制方式下阶跃信号的响应曲线
图17  主从运动跟踪实验装置
图18  主从运动跟踪实验结果
图19  轴向近端力检测评估实验装置
图20  静态标定实验结果
图21  动态标定实验结果
图22  径向夹紧力检测评估实验装置
图23  径向夹紧力检测评估实验结果
1 KAZANZIDES P, FICHTINGER G, HAGER G, et al. Surgical and interventional robotics: core concepts, technology, and design[J]. IEEE Robotics & Automation Magazine, 2008, 15(2): 122-130.
2 NETO F A B, ALVES A F F, MASCARENHAS Y M, et al. Occupational radiation exposure in vascular interventional radiology: a complete evaluation of different body regions[J]. Physica Medica, 2016, 32(8): 1019-1024.
3 ANDREASSI M G, PICCALUGA E, GUAGLIUMI G, et al. Occupational health risks in cardiac catheterization laboratory workers[J]. Circulation Cardiovascular Interventions, 2016, 9(4): 132-134.
4 EPSTEIN S, SPARER E H, TRAN B N, et al. Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: a systematic review and meta-analysis[J]. JAMA Surgery, 2018, 153(2): e174947.
5 HEDYEH R T, PAYNE C J, YANG G Z. Current and emerging robot-assisted endovascular catheterization technologies: a review[J]. Annals of Biomedical Engineering, 2014, 42(4): 697-715.
6 TANIMOTO M, ARAI F, FUKUDA T, et al. Telesurgery system for intravascular neurosurgery[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin: Springer, 2000: 29-39.
7 GHAMRAOUI A K, RICOTTA J J. Current and future perspectives in robotic endovascular surgery[J]. Current Surgery Reports, 2018, 6: 21.
8 KHAN E M, FRUMKIN W, ANDRE N G, et al. First experience with a novel robotic remote catheter system: Amigo™ mapping trial[J]. Journal of Interventional Cardiac Electrophysiology, 2013, 37(2): 121-129.
9 MANGELS D R, GIRI J, HIRSHFELD J, et al. Robotic-assisted percutaneous coronary intervention[J]. Catheterization and Cardiovascular Interventions, 2017, 90(6): 948-955.
10 ARAI F, FUJIMURA R, FUKUDA T, et al. New catheter driving method using linear stepping mechanism for intravascular neurosurgery[C]// Proceeding of 2002 IEEE International Conference on Robotics and Automation. Washington, DC, May 11-15, 2002.
11 LAURA Cercenelli, EMANUELA Marcelli, GIANNI Plicchi, et al. Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters[J]. ASAIO Journal, 2007, 53(5): 523-529.
12 THAKUR Y, BAX J, HOLDSWORTH D W, et al. Design and performance evaluation of a remote catheter navigation system[J]. IEEE Transaction on Biomedical Engineering, 2009, 56(7): 1901-1908.
13 SRIMATHVEERAVALLI G, KESAVADAS T, LI X Y. Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2010, 6(2): 160-170.
14 GUO Jian, GUO Shu-xiang, XIAO Nan, et al. A novel robotic catheter system with force and visual feedback for vascular interventional surgery[J]. International Journal of Mechatronics and Automation, 2012, 2(1): 15-24.
15 PATEL T M, SHAH S C, PANCHOLY S B. Long distance tele-robotic-assisted percutaneous coronary intervention: a report of first-in-human experience[J]. eClinicalMedicine, 2019, 14: 53-58.
16 LEMOS P A, FRANKEN M, MARIANI J, et al. Robotic-assisted intervention strategy to minimize air exposure during the procedure: a case report of myocardial infarction and COVID-19[J]. Cardiovascular Diagnosis and Therapy, 2020, 10(5): 1345-1351.
17 FU Yi-li, LIU Hao, WANG Shu-guo, et al. Skeleton-based active catheter navigation[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2009, 5(2): 125-135.
18 FU Yi-li, GAO An-zhu, LIU Hao, et al. Development of a novel robotic catheter system for endovascular minimally invasive surgery[C]//The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, May 22-25, 2011.
19 JI Cheng, HOU Zeng-guang, XIE Xiao-liang. An image-based guidewire navigation method for robot-assisted intravascular interventions[C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Aug. 30-Sep. 3, 2011.
20 LIU Da, LIU Deng-ling. Accuracy experimental study of the vascular interventional surgical robot propulsive mechanism[C]//The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, May 22-25, 2011.
21 BIAN Gui-bin, XIE Xiao-liang, FENG Zhen-qiu, et al. An enhanced dual-finger robotic Hand for Catheter manipulating in vascular intervention: a preliminary study[C]//2013 IEEE International Conference on Information and Automation (ICIA), Yinchuan, Aug. 26-28, 2013.
22 PENG Wei-li, XIAO Nan, GUO Shu-xiang, et al. A novel force feedback interventional surgery robotic system[C]//2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, Aug. 2-5, 2015.
23 WANG Kun-dong, LU Qing-sheng, CHEN Bin, et al. Endovascular intervention robot with multi-manipulators for surgical procedures: dexterity, adaptability, and practicability[J]. Robotics and Computer-Integrated Manufacturing, 2019, 56: 75-84.
24 GUO Jian, JIN Xiao-liang, GUO Shu-xiang, et al. A vascular interventional surgical robotic system based on force-visual feedback[J]. IEEE Sensors Journal, 2019, 19(23): 11081-11089.
25 WANG Hong-bo, CHANG Jing-yuan, YU Hao-yang, et al. Research on a novel vascular interventional surgery robot and control method based on precise delivery[J]. IEEE Access, 2021, 9: 26568-26582.
26 GUO Jian, JIN Xiao-liang, GUO Shu-xiang, et al. Study on the tracking performance of the vascular interventional surgical robotic system based on the fuzzy-PID controller[C]//2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Aug. 6-9, 2017.
27 GUO Shu-xiang, GUO Yang-ming, BAO Xian-qiang, et al. A PID-type fuzzy logic controller for an interventional surgical robot[C]//2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, Aug. 4-7, 2019.
28 姜明明.微创血管介入手术机器人系统远端主从控制研究[D].沈阳:沈阳工业大学,2014:26-27.
JIANG Ming-ming. Research on remote master-slave control of minimally invasive vascular interventional surgery robot system[D]. Shenyang: Shenyang University of Technology, 2014: 26-27.
29 彭维礼.心脑血管主从介入手术机器人系统的从端力反馈控制研究[D].北京:北京理工大学,2016:35-37.
PENG Wei-li. Research on slave-end force feedback control of cardiovascular and cerebrovascular master-slave interventional robotic system[D]. Beijing: Beijing Institute of Technology, 2016: 35-37.
[1] 高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.
[2] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
[3] 张俊宝, 侯红娟, 崔国华, 刘健. 一类刚柔协作混联机器人机构的绳索数量和位置分布研究[J]. 工程设计学报, 2020, 27(3): 364-372.
[4] 张俊宝, 侯红娟, 刘健, 孙丁丁, 解磊磊. 刚柔协作3CD/2RPU-SPR搅拌摩擦焊机器人研究[J]. 工程设计学报, 2020, 27(2): 172-181.