Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (5): 607-615    DOI: 10.3785/j.issn.1006-754X.2022.00.069
整机和系统设计     
昆虫飞行信息自动化采集装置的设计
陆古月1(),邢强1(),赵蔚1,马磊2,张小萍1,王文波3
1.南通大学 机械工程学院,江苏 南通 226019
2.南通大学 信息科学技术学院,江苏 南通 226019
3.南京航空航天大学 机电学院,江苏 南京 210016
Design of automatic collection device for insect flight information
Gu-yue LU1(),Qiang XING1(),Wei ZHAO1,Lei MA2,Xiao-ping ZHANG1,Wen-bo WANG3
1.School of Mechanical Engineering, Nantong University, Nantong 226019, China
2.School of Information Science and Technology, Nantong University, Nantong 226019, China
3.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(3110 KB)   HTML
摘要:

针对现有昆虫飞行信息采集方法中存在的采集数据量大、采集效率低和束缚实验对象等问题,设计了一种基于视觉检测技术的自动化采集装置。该装置主要包括障碍通道模块、运动触发采集模块、飞行轨迹信息模块和自动采集控制系统。首先,根据控制功能的需求设计了间隙控制器,采用激光测距传感器和步进电机等硬件实现了闭环控制;其次,采用STM32微控制器为控制终端,并结合运动方向检测算法触发Blackfly S USB3高速相机,实现昆虫在指定运动方向的序列图像采集;然后,利用开源计算机视觉库OpenCV分析采集的序列图像,获取昆虫的飞行轨迹信息;最后,通过嵌入式控制系统协调各模块之间的通信,以达到高效、稳定获取昆虫飞行信息的设计要求。为了验证该装置的适用性和准确率,选取中华蜜蜂进行穿越间隙的实验,实验结果表明:在静态环境中,该装置能获取完整、清晰的飞行序列图像,平均准确率达到73.24%,采集性能稳定,有效提升了采集效率。通过分析蜜蜂的飞行轨迹信息,推断出其识别间隙的机制与横向运动的幅度和速度存在联系,这为深度研究蜜蜂的飞行机制提供了支持。

关键词: 自动化采集装置蜜蜂行为学图像采集设计    
Abstract:

Aiming at the problems of large amount of data collection, low collection efficiency and binding experimental objects existing in the current insect flight information collection methods, an automatic collection device based on visual inspection technology was designed. The device mainly included obstacle channel module, motion trigger acquisition module, flight path information module and automatic acquisition control system. Firstly, gap controller was designed according to the requirements of the control function, and closed-loop control was realized by using hardware such as laser ranging sensor and stepping motor; secondly, the STM32 microcontroller was used as control terminal, and the Blackfly S USB3 high-speed camera was triggered by using motion direction detection algorithm to realize the sequence image acquisition of insects in the specified motion direction; then, using the open-source computer vision library OpenCV to analyze the collected sequence images and obtain the flight path information of insects; finally, the embedded control system coordinated the communication between modules to achieve the design requirements of efficient and stable acquisition of insect flight information. In order to verify the applicability and accuracy of the device, Apis cerana was selected for the gap crossing experiment. The experimental results showed that in a static environment, the device could obtain complete and clear flight sequence images. The average accuracy rate reached 73.24%. The acquisition performance was stable, which effectively improved the acquisition efficiency. By analyzing the flight path information of honeybee, it is inferred that the mechanism of gap recognition is related to the amplitude and speed of its lateral movement, which provides support for in-depth research on the flight mechanism of Apis cerana.

Key words: automatic collection device    honeybee behavior    image acquisition    design
收稿日期: 2021-12-03 出版日期: 2022-11-02
CLC:  TP 242  
基金资助: 国家重点研发计划资助项目(2020YFB1313504)
通讯作者: 邢强     E-mail: 2009310009@stmail.ntu.edu.cn;meexq@ntu.edu.cn
作者简介: 陆古月(1997—),男,江苏盐城人,硕士,从事自动化技术研究,E-mail:2009310009@stmail.ntu.edu.cnhttps://orcid.org/0000-0002-7046-1748
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陆古月
邢强
赵蔚
马磊
张小萍
王文波

引用本文:

陆古月,邢强,赵蔚,马磊,张小萍,王文波. 昆虫飞行信息自动化采集装置的设计[J]. 工程设计学报, 2022, 29(5): 607-615.

Gu-yue LU,Qiang XING,Wei ZHAO,Lei MA,Xiao-ping ZHANG,Wen-bo WANG. Design of automatic collection device for insect flight information[J]. Chinese Journal of Engineering Design, 2022, 29(5): 607-615.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.069        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I5/607

图1  昆虫飞行信息自动化采集装置的结构1—固定机构;2—飞行通道;3—运动检测相机;4—相机角度调节器;5—高速相机;6—红外LED补光灯;7—间隙控制器。
图2  间隙控制器结构1—激光测距传感器;2—激光反射挡板;3—滚珠轴承;4—门板;5—齿条;6—齿轮;7—滚动销;8—滑动轨道。
图3  红外光补光前后图像的对比
图4  运动触发采集模块的组成
图5  昆虫飞行轨迹信息获取流程
图6  自动采集控制系统结构框图
图7  自动采集控制系统硬件组成
图8  自动采集控制系统软件设计流程
图9  蜜蜂飞行信息自动化采集实验场景
设定间距/mm实验序号工作噪声/dB实测间距/mm误差值/mm
20146.420.540.54
245.219.41-0.59
30150.330.950.95
247.931.541.54
35151.736.181.18
252.134.04-0.96
40153.439.25-0.75
255.241.361.36
平均值50.27531.66-0.98
表 1  蜜蜂飞行信息自动化采集装置噪声和控制准确性测试结果
障碍间距/mm采集样品数/份准确采用样品数/份采集准确率/%
单目标多目标总计
平均值8823.54164.573.24
208515445969.41
308922436572.03
358725406574.71
409132376975.82
表2  蜜蜂间隙穿越实验结果
图10  蜜蜂飞行轨迹
图11  在不同障碍间距下蜜蜂纵横向速比
障碍间距/mm纵向平均速比变化率/%横向平均速比变化率/%
前阶段后阶段前阶段后阶段
201.100.82280.781.0931
301.120.87251.030.8419
350.951.07121.180.8335
401.011.0221.090.7237
表 3  在不同障碍间距下蜜蜂纵横向平均速比
图12  蜜蜂在不同实验阶段的飞行轨迹
1 程宏宝.仿蝴蝶飞行器总体设计与控制仿真[D].南京:南京航空航天大学,2020:1-63.
CHENG Hong-bao. Overall design and control simulation of a butterfly-shaped aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 1-63.
2 梁友鉴,赵杰亮,阎绍泽,等.基于蜜蜂腹部变体机制的空天飞行器仿生变体头锥设计[J].机械工程学报,2020,56(5):47-54. doi:10.3901/jme.2020.05.047
LIANG You-jian, ZHAO Jie-liang, YAN Shao-ze, et al. Bionic design of morphing nose cone for aerospace vehicle based on the deformable mechanism of honeybee abdomen[J]. Journal of Mechanical Engineering, 2020, 56(5): 47-54.
doi: 10.3901/jme.2020.05.047
3 THURROWGOOD S, MOORE R, SOCCOL D, et al. A biologically inspired, vision-based guidance system for automatic landing of a fixed-wing aircraft[J]. Journal of Field Robotics, 2014, 31(4): 699-727. doi:10.1002/rob. 21527
doi: 10.1002/rob. 21527
4 LIU H, RAVI S, KOLOMENSKIY D, et al. Biomechanics and biomimetics in insect-inspired flight systems[J]. Philosophical Transactions of the Royal Society B, 2016, 371: 20150390. doi: 10.1098/rstb. 2015.0390
doi: 10.1098/rstb. 2015.0390
5 DOUSSOT C, BERTRAND O, EGELHAAF M. Visually guided homing of bumblebees in ambiguous situations: A behavioural and modelling study[J]. PLoS Computational Biology, 2020, 16(10): 1553-7358. doi: 10.1371/journal.pcbi.1008272
doi: 10.1371/journal.pcbi.1008272
6 DOUSSOT C, BERTRAND O, EGELHAAF M. The critical role of head movements for apatial representation during bumblebees learning flight[J]. Frontiers in Behavioral Neuroscience, 2021, 14(1): 1-16. doi: 10.3389/fnbeh.2020.606590
doi: 10.3389/fnbeh.2020.606590
7 SRINIVASAN M. Small brains, smart computations: Vision and navigation in honeybees, and applications to robotics[J]. International Congress Series, 2006, 1291: 30-37. doi:10.1016/j.ics.2006.01.055
doi: 10.1016/j.ics.2006.01.055
8 BRAUN E, DITTMAR L, BOEDDEKER N, et al. Prototypical components of honeybee homing flight behavior depend on the visual appearance of objects surrounding the goal[J]. Frontiers in Behavioral Neuroscience, 2012, 6(1): 1-16. doi:10.3389/fnbeh. 2012.00001
doi: 10.3389/fnbeh. 2012.00001
9 刘晶,汪超,谢鹏,等.基于PD控制的仿昆虫扑翼样机研制[J].航空学报,2020,41(9):111-122. doi:10.7527/S1000-6893.2020.23678
LIU Jing, WANG Chao, XIE Peng, et al. Development of insect-like flapping wing micro air vehicle based on PD control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 111-122.
doi: 10.7527/S1000-6893.2020.23678
10 叶锦涛,刘凤丽,郝永平,等.一种超低空飞行的仿生扑翼飞行器的设计及分析[J].工程设计学报,2021, 28(4):473-479. doi:10.3785/j.issn.1006-754X.2021.00.052
YE Jin-tao, LIU Feng-li, HAO Yong-ping, et al. Design and analysis of a bionic flapping wing aircraft flying at ultra-low altitude[J]. Chinese Journal of Engineering Design, 2021, 28(4): 473-479.
doi: 10.3785/j.issn.1006-754X.2021.00.052
11 NARANJO S. Assessing insect flight behavior in the laboratory: A primer on flight mill methodology and what can be learned[J]. Annals of the Entomological Society of America, 2019, 112(3): 182-199. doi:10.1093/aesa/say041
doi: 10.1093/aesa/say041
12 LAWSON K, SRINIVASAN M. Flight control of fruit flies: Dynamic response to optic flow and headwind[J]. The Journal of Experimental Biology, 2017, 220(11): 2005-2016.
13 LAWSON K, SRINIVASAN M. A robust dual-axis virtual reality platform for closed-loop analysis of insect flight[C]. Kuala Lumpur, Dec. 12-15, 2018. doi: 10.1109/ROBIO.2018.8664837
doi: 10.1109/ROBIO.2018.8664837
14 RIBAK G, BARKAN S, SOROKER V. The aerodynamics of flight in an insect flight-mill[J]. PLOS ONE, 2017, 12(11): e0186441. doi: 10.1371/journal.pone. 0186441
doi: 10.1371/journal.pone. 0186441
15 HEINRICH B. Thermoregulation in endothermic insects: body temperature is closely attuned to activity and energy supplies[J]. Science, 1974, 185: 747-756. doi:10.1126/science.185.4153.747
doi: 10.1126/science.185.4153.747
16 RAVI S, SIESENOP T, BERTRAND O J, et al. Bumblebees display characteristics of active vision during robust obstacle avoidance flight[J]. Journal of Experimental Biology, 2022, 225(4): jeb.243021. doi: 10.1242/jeb.243021
doi: 10.1242/jeb.243021
17 LINANDER N, DACKE M, BAIRD E. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field[J]. The Journal of Experimental Biology, 2015, 218(7): 1051-1059. doi:10.1242/jeb.107409
doi: 10.1242/jeb.107409
18 RAVI S, BERTRAND O, SIESENOP T, et al. Gap perception in bumblebees[J]. The Journal of Experimental Biology, 2019, 222(2): jeb.184135. doi:10.1242/jeb.184135
doi: 10.1242/jeb.184135
19 BERTRAND O, DOUSSOT C, SIESENOP T, et al. Visual and movement memories steer foraging bumblebees along habitual routes[J]. Journal of Experimental Biology, 2021, 224(11): jeb.237867. doi:10.1242/jeb.237867
doi: 10.1242/jeb.237867
20 RAVI S, SIESENOP T, BERTRAND O, et al. Bumblebees perceive the spatial layout of their environment in relation to their body size and form to minimize inflight collisions[J]. Proceedings of the National Academy of Sciences, 2020, 117(49): 31494-31499. doi:10.1073/pnas.2016872117
doi: 10.1073/pnas.2016872117
21 SRINIVASAN M, LEHRER M, KIRCHNER W, et al. Range perception through apparent image speed in freely flying honeybees[J]. Visual Neuroscience, 1991, 6(5): 519-535. doi:10.1017/s095252380000136x
doi: 10.1017/s095252380000136x
22 黄文诚. 蜜蜂品种介绍[J]. 吉林畜牧兽医, 2000, 1(5):32.
HUANG Wen-cheng. Bee species introduction[J]. Jilin Animal Husbandry and Veterinary Medicine, 2000, 1(5): 32.
[1] 李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.
[2] 王柏村,朱凯凌,鲍劲松,王峰,谢海波,杨华勇. 基于数字底座的涂装车身缓存区智能设计与调度优化[J]. 工程设计学报, 2023, 30(4): 399-408.
[3] 谢博伟,金莫辉,杨洲,段洁利,屈明宇,李锦辉. 3D打印TPU材料的力学性能及模型参数研究[J]. 工程设计学报, 2023, 30(4): 419-428.
[4] 王金栋,谢宇鸿,陈燚,吴展扬. 基于河狸门齿的锤片式粉碎机锤片仿生设计[J]. 工程设计学报, 2023, 30(4): 476-484.
[5] 戚其松,李成刚,董青,陈钰浩,徐航. 起重机生命周期载荷谱预测及基于疲劳寿命的结构优化设计[J]. 工程设计学报, 2023, 30(3): 380-389.
[6] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[7] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[8] 张正峰,宋小雨,袁晓磊,陈文娟,张伟东. Al/CFRP混合薄壁结构耐撞性能可靠性优化设计[J]. 工程设计学报, 2022, 29(6): 720-730.
[9] 严正峰,侯林子,韩瑱,白先旭. 汽车离合器IPPD方法研究[J]. 工程设计学报, 2022, 29(5): 537-546.
[10] 李争,罗晓瑞,解波,曹欣,孙鹤旭. 基于光强感知的太阳能智慧跟踪系统设计[J]. 工程设计学报, 2022, 29(5): 627-633.
[11] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[12] 孙光明,王奕苗,万仟,弓堃,汪文津,赵坚. 考虑装配变形的精密机床床身优化设计[J]. 工程设计学报, 2022, 29(3): 318-326.
[13] 廖红玉,邓梦洋,周敏,谢良喜,姚俊夫. 基于钢丝绳传动的自动抹灰机的轻量化设计[J]. 工程设计学报, 2022, 29(2): 196-201.
[14] 辛传龙,郑荣,任福琳,梁洪光. AUV接驳装置悬浮平衡分析与配重优化设计[J]. 工程设计学报, 2022, 29(2): 176-186.
[15] 徐云杰,沈俞,胡飞,贾良权,祁亨年. 基于TDLAS的批量种子活力检测装置设计[J]. 工程设计学报, 2022, 29(2): 231-236.