Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (2): 176-186    DOI: 10.3785/j.issn.1006-754X.2022.00.022
优化设计     
AUV接驳装置悬浮平衡分析与配重优化设计
辛传龙1,2,3(),郑荣1,2(),任福琳1,2,梁洪光1,2
1.中国科学院 沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
2.中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169
3.中国科学院大学,北京 100049
Suspension balance analysis and counterweight optimization design of AUV docking device
Chuan-long XIN1,2,3(),Rong ZHENG1,2(),Fu-lin REN1,2,Hong-guang LIANG1,2
1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
2.Institute for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3329 KB)   HTML
摘要:

为了保证用于对接回转型自主水下机器人(autonomous underwater vehicle, AUV)的开合式接驳装置处于水下单点系泊悬浮状态时的平衡与稳定,须对其进行配重优化设计。通过对开合对接机构的位移分析,获得接驳装置体重心和浮心位置的变化范围;基于静力学理论,建立并分析重心、浮心和拖点的相对位置与接驳装置悬浮平衡纵倾角的关系。为了使接驳装置悬浮平衡纵倾角及其波动幅值小,及配重后接驳装置的质量最小,建立AUV接驳装置配重优化模型,并采用序列二次规划(sequential quadratic programming, SQP)方法对配重铅块、浮力材的特征尺寸和拖点位置等配重参数进行优化设计。通过接驳装置单点系泊悬浮实验,验证了优化配重后接驳装置满足设计要求。研究结果表明:相比自由拖架形式,采用固定拖架形式可以增大拖点与重心之间的垂向距离,非常有利于装置的水下悬浮平衡;相比经验配重设计,优化配置后装置总质量约减小了13.4 kg,悬浮平衡纵倾角波动幅值约减小90.68%,稳心高约增加7.63 mm,配重优化后AUV接驳装置系泊悬浮平衡状态良好。配重优化模型的建立及分析结果对水下接驳拖体的衡重设计及其拖架方案设计具有一定的指导意义。

关键词: 水下接驳系统水下对接衡重设计配重优化单点系泊悬浮对接    
Abstract:

In order to ensure the balance and stability of the opening and closing docking device of the AUV (autonomous underwater vehicle) when it is in the single point mooring suspension statin in water, the counterweight optimization design must be carried out.Through the displacement analysis of the opening and closing docking mechanism, the position variation range of gravity center and buoyancy center of the docking device was obtained; based on the static theory, the relationship between the relative positions of gravity center, buoyancy center, towing point and the suspension balance trim angle of the docking device was established and analyzed. In order to reduce the suspension balance trim angle and its fluctuating value of the docking device and minimize the mass of the docking device after counterweight, the counterweight optimization model of AUV docking device was established. And the optimal design of counterweight parameters such as characteristics size of counterweight lead blocks, buoyant material and towing point positions was carried out adopting SQP (sequential quadratic programming) method. Through the experiment of single point mooring suspension of the docking device, it was verified that the docking device met the design requirements after counterweight optimization. The results showed that compared with the free towing frame, using fixed towing frame could increase the vertical distance between the towing point and gravity center, which was very conducive to the underwater suspension balance of the device; compared with empirical counterweight design, after configuration optimization, the total mass of the device was reduced by about 13.4 kg, the fluctuating value of suspension balance trim anglewas reduced by about 90.68%, and the metacentric height was increased by about 7.63 mm. The mooring suspension balance of AUV connection system after counterweight optimization was in good condition. The establishment and analysis results of the counterweight optimization model have certain guiding significance for the counterweight design of the underwater docking towing body and its towing frame scheme design.

Key words: underwater connection system    underwater docking    balance weight design    counterweight optimization    single point mooring suspension docking
收稿日期: 2021-03-18 出版日期: 2022-05-10
CLC:  TH 122  
基金资助: 国防基础科研计划资助项目(JCKY2019207A019-2);中国科学院战略性先导科技专项项目(XDA13030204)
通讯作者: 郑荣     E-mail: xinchuanlong@gis.sia.cn;zhengr@sia.cn
作者简介: 辛传龙(1995—),男,山东济宁人,硕士生,从事水下机器人对接回收技术研究,E-mail:xinchuanlong@gis.sia.cnhttps://orcid.org/0000-0002-4792-6439
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
辛传龙
郑荣
任福琳
梁洪光

引用本文:

辛传龙,郑荣,任福琳,梁洪光. AUV接驳装置悬浮平衡分析与配重优化设计[J]. 工程设计学报, 2022, 29(2): 176-186.

Chuan-long XIN,Rong ZHENG,Fu-lin REN,Hong-guang LIANG. Suspension balance analysis and counterweight optimization design of AUV docking device[J]. Chinese Journal of Engineering Design, 2022, 29(2): 176-186.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.022        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I2/176

图1  USV自主部署AUV一体化系统
图2  开合式接驳装置的结构
图3  开合对接机构示意
图4  牛顿‒辛普森数值算法框图
图5  接驳装置悬浮平衡受力分析
图6  重浮心位置与悬浮平衡纵倾角的关系
图7  重浮心相对位置变动可行域
图8  拖点位置与悬浮平衡纵倾角的关系
图9  拖架长度对悬浮平衡纵倾角的影响
图10  配重部件的特征截面
图11  优化问题求解流程
对比项初始设计配重优化后
h[210 mm, 200 mm, 60 mm, 260 mm, 310 mm, 90°][210 mm, 200 mm, 60 mm, 260 mm, 310 mm, 90°][178.544 9 mm, 212.819 7 mm, 130, 320 mm, 380, mm, 95°][178 mm, 213 mm, 130 mm, 320 mm, 380 mm, 95°]
m/kg371.350 7371.350 7358.255 4357.935 5
θ/(°)(-7.37, 0.124 7)(0.008 4, 0.502 1)(0.086 1, 0.586 1)(0.110 7, 0.785 9 )
θv/(°)7.245 30.493 70.50.675 3
zGB /mm17.374 217.374 22524.999 9
拖架形式自由铰接拖架可调固定拖架可调固定拖架
表1  配重优化前后设计变量值和目标值
图12  接驳装置单点系泊悬浮实验现场
图13  λ=95°时导向罩动作对悬浮平衡纵倾角的影响
图14  拖架位置对悬浮平衡纵倾角的影响
图15  悬浮平衡纵倾角与拖架角的关系
1 蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁 科学技术出版社,2000:1-10.
JIANG Xin-song, FENG Xi-sheng, WANG Di-tang. Unmanned underwater vehicles[M]. Shenyang: Liaoning Science and Technology Press, 2000: 1-10.
2 孙庆刚,郑荣,安家玉,等.基于浮力调节系统的AUV定深悬浮控制[J].海洋技术学报,2017,36(6):33-37. doi:10.3969/j.issn.1003-2029.2017.06.006
SUN Qing-gang, ZHENG Rong, AN Jia-yu, et al. Study on the AUV depth and hovering control based on variable buoyancy system[J]. Journal of Ocean Technology, 2017, 36(6): 33-37.
doi: 10.3969/j.issn.1003-2029.2017.06.006
3 罗阳,陶建国,邓立平,等.水下焊接机器人变质心补偿控制[J].机器人,2020,42(3):289-300. doi:10.13973/j.cnki.robot.190293
LUO Yang, TAO Jian-guo, DENG Li-ping, et al. Centroid variability compensation control of underwater welding vehicle[J]. Robot, 2020, 42(3): 289-300.
doi: 10.13973/j.cnki.robot.190293
4 孙烨,司先才,裴建新,等.一种水下拖曳体的运动特性模拟研究[J].船舶工程,2018,40(S1):330-334.
SUN Ye, SI Xian-cai, PEI Jian-xin, et al. Simulation study of dynamic characteristics of one underwater towed vehicle[J]. Ship Engineering, 2018, 40(S1): 330-334.
5 俞建成,张奇峰,吴利红,等.水下滑翔机器人运动调节机构设计与运动性能分析[J].机器人,2005,27(5):390-395.
YU Jian-cheng, ZHANG Qi-feng, WU Hong-li, et al. Movement mechanism design and motion performance analysis of an underwater glider[J]. Robot, 2005, 27(5): 390-395.
6 孙洪鸣,郭威,周悦,等.全海深着陆车机构设计及其潜浮运动性能分析[J].机器人,2020,42(2):207-214. doi:10.13973/j.cnki.robot.190375
SUN Hong-ming, GUO Wei, ZHOU Yue, et al. Mechanism design and diving-floating motion performance analysis on the full ocean depth landing vehicle[J]. Robot, 2020, 42(2): 207-214.
doi: 10.13973/j.cnki.robot.190375
7 郑荣,辛传龙,汤钟,等.无人水面艇自主部署自主水下机器人平台技术综述[J].兵工学报,2020,41(8):1675-1687. doi:10.3969/j.issn.1000-1093.2020.08.022
ZHENG Rong, XIN Chuan-long, TANG Zhong, et al. Review on the platform technology of autonomous deployment of AUV by USV[J]. Acta Armamentarii, 2020, 41(8): 1675-1687.
doi: 10.3969/j.issn.1000-1093.2020.08.022
8 GUO Jing-qian, ZHENG Rong, YU Xiao-lei, et al. Autonomous underwater vehicle docking system based on wired transmission[C]//Proceedings of the 1st WRC Symposium on Advanced Robotics and Automation, Beijing, China, August 16, 2018.
9 王志博.海洋拖曳系统动力学与设计[M].北京:国防工业出版社,2019:1-18.
WANG Zhi-bo. Dynamics and design of ocean towing system[M]. Beijing: National Defense Industry Press, 2019: 1-18.
10 兰晓娟,孙汉旭,贾庆轩,等.水下球形机器人BYSQ-2型的结构设计与优化[J].北京邮电大学学报,2012,35(4): 11-14,23. doi:10.3969/j.issn.1007-5321.2012.04.003
LAN Xiao-juan, SUN Han-xu, JIA Qing-xuan, et al. Design and optimization of a spherical underwater vehicle BYSQ-2′s structure[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4): 11-14, 23.
doi: 10.3969/j.issn.1007-5321.2012.04.003
11 游进,田政,侯向阳.基于遗传算法的再入航天器配重布局优化[J].航天器工程,2015,24(1):56-61. doi:10.3969/j.issn.1673-8748.2015.01.010
YOU Jin, TIAN Zheng, HOU Xiang-yang. Genetic algorithm based optimization of counterweight distribution for reentry vehicle[J]. Spacecraft Engineering, 2015, 24(1): 56-61.
doi: 10.3969/j.issn.1673-8748.2015.01.010
12 郭仁生.机械工程设计分析和MATLAB应用[M]. 北京:机械工业出版社, 2014:83-134.
GUO Ren-sheng. Mechanical engineering design analysis and MATLAB application[M]. Beijing: China Machine Press, 2014: 83-134.
13 谌庆荣,程文明,王书标,等.叉车转向机构运动学与力学分析及多目标优化[J].华中科技大学学报(自然科学版), 2017,45(5):72-76.
CHEN Qing-rong, CHENG Wen-ming, WANG Shu-biao, et al. Kinematic and mechanical analysis and multi-objective optimization of steering linkages for forklift truck[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(5): 72-76.
14 薛定宇.MATLAB最优化计算[M]. 北京:清华大学出版社, 2020:126-166. doi:10.1515/9783110667011
XUE Ding-yü. MATLAB optimization calculation[M]. Beijing: Tsinghua University Press, 2020: 126-166.
doi: 10.1515/9783110667011
[1] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
[2] 汤 剑,谢长雄. 皮卫星质量特性测量和配重优化[J]. 工程设计学报, 2014, 21(6): 566-571.