Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (5): 650-656    DOI: 10.3785/j.issn.1006-754X.2023.00.070
产品创新设计     
基于 USVAUV布放回收系统设计与实现
李明烁1,2,3(),孟令帅2,3(),谷海涛2,3,曹新星2,3,4,张明远2,3,5
1.沈阳工业大学 机械工程学院,辽宁 沈阳 110870
2.中国科学院沈阳自动化研究所 机器人学国家重点实验室,辽宁 沈阳 110016
3.中国科学院 机器人与智能制造创新研究院,辽宁 沈阳 110169
4.东北大学 机械工程与自动化学院,辽宁 沈阳 110819
5.中国科学院大学,北京 100049
Design and implementation of launch and recovery system for AUV based on USV
Mingshuo LI1,2,3(),Lingshuai MENG2,3(),Haitao GU2,3,Xinxing CAO2,3,4,Mingyuan ZHANG2,3,5
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
4.School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
5.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(5009 KB)   HTML
摘要:

为了解决目前布放回收自主水下机器人(autonomous underwater vehicle,AUV)自动化水平低、工作效率低、危险性高等问题,研制了一款基于无人水面船(unmanned surface vessel,USV)的AUV自主布放回收系统。首先,通过分析国内外常用AUV布放回收方式和布放回收系统,设计了AUV布放回收系统,并对其工作原理进行分析;其次,分别从力学分析、数值仿真等角度研究了布放回收系统的动力学、静力学及接触碰撞问题;最后,搭建了系统原理样机并进行了陆上实验和湖上实验,通过实验验证了所设计的布放回收系统稳定可靠、操作简单、通用性好,可以有效提高AUV自主布放回收的效率。所设计的基于USV的AUV布放回收系统具有良好的应用前景。

关键词: 自主水下机器人布放回收系统结构设计力学分析湖上测试    
Abstract:

In order to solve the problems of low automation level, low work efficiency and high risk when launching and recovering autonomous underwater vehicle (AUV), an launch and recovery system (LARS) for AUV based on unmanned surface vessel (USV) was developed. Firstly, by analyzing commonly used AUV launch and recovery modes and LARS at home and aboard, an AUV LARS was designed, and its working principle was analyzed; secondly, the dynamics, statics and contact collision issues of the LARS were studied from the perspectives of mechanical analysis and numerical simulation; finally, a principle prototype of the system was built and land and lake experiments were conducted. The experiments verified that the designed LARS was stable, reliable, easy to operate, and had good universality, which could effectively improve the efficiency of autonomous launch and recovery of AUV. The designed AUV LARS based on USV has good application prospects.

Key words: autonomous underwater vehicle (AUV)    launch and recovery system (LARS)    structural design    mechanical analysis    lake testing
收稿日期: 2023-01-26 出版日期: 2023-11-03
CLC:  TP 242  
基金资助: 中国科学院沈阳自动化研究所机器人学国家重点实验室资助项目(E11Z0902);辽宁省自然科学基金资助项目(E1310901)
通讯作者: 孟令帅     E-mail: 1520607043@qq.com;menglingshuai@sia.cn
作者简介: 李明烁(1999—),男,辽宁辽阳人,硕士生,从事水下机器人设计研究,E-mail: 1520607043@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李明烁
孟令帅
谷海涛
曹新星
张明远

引用本文:

李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.

Mingshuo LI,Lingshuai MENG,Haitao GU,Xinxing CAO,Mingyuan ZHANG. Design and implementation of launch and recovery system for AUV based on USV[J]. Chinese Journal of Engineering Design, 2023, 30(5): 650-656.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.070        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I5/650

图1  智慧透明海洋网络系统
图2  佛罗里达大西洋大学研制的AUV布放回收系统
图3  Hydroid公司研制的AUV布放回收系统
图4  “探索者”号AUV布放回收系统
图5  基于USV的AUV布放回收系统结构
图6  自主回收AUV流程
参数量值
条件强度极限355 MPa
抗拉极限600 MPa
伸长率16%
泊松比0.31
材料密度7 850 kg/m 3
表1  45号钢性能参数
图7  折合板受力
图8  AUV布放模型
图9  接触力变化曲线
图10  折合板应力及位移仿真结果
图11  轴承基座应力及位移仿真结果
图12  AUV布放回收实验
1 BIAN X Q, YAN Z P, CHEN T, et al. Mission management and control of BSA-AUV for ocean survey[J]. Ocean Engineering, 2012, 55( 6): 161- 174.
2 YAN Z P, YU H M, ZHANG W, et al. Globally finite-time stable tracking control of underactuated UUVs[J]. Ocean Engineering, 2015, 107( 7): 132- 146.
3 吴泽伟, 吴晓锋, 杜虎. 水下特种运载器水下回收方式[J]. 火力与指挥控制, 2016, 41( 5): 28- 31. doi: 10.3969/j.issn.1002-0640.2016.02.008
WU Z W, WU X F, DU H. Research on the underwater recovery manner for underwater special vehicles[J]. Fire Control and Command Control, 2016, 41( 5): 28- 31.
doi: 10.3969/j.issn.1002-0640.2016.02.008
4 SARDA E I, DHANAK M R. Launch and recovery of an autonomous underwater vehicle from a station-keeping unmanned surface vehicle[J]. IEEE Journal of Oceanic Engineering, 2019, 44( 2): 290- 299.
5 PAGE B R, LAMBERT R, CHAVEZ G J, et al. Underwater docking approach and homing to enable persistent operation[J]. Frontiers in Robotics and AI, 2021, 8: 621755.
6 MENG L S, LIN Y, GU H T, et al. Study on the mechanical characteristics of an underwater towing system for recycling an autonomous underwater vehicle (AUV)[J]. Ocean Research, 2018, 79( 7): 123- 133.
7 SARDA E, DHANAK M. Unmanned recovery of an AUV from a surface platform manuscript[C]// Oceans '13 MTS/IEEE, San Diego, September 23-26, 2013.
8 MCEWEN R S, HOBSON B W, MCBRIDE L, et al. Docking control system for a 54-cm-diameter (21-in) AUV[J]. IEEE Journal of Oceanic Engineering, 2008, 33( 4): 550- 562.
9 曾永. UUV布放回收技术[J]. 水雷战与舰船防护, 2015, 23( 1): 13- 16.
ZENG Y. UUV deployment recycling technology[J]. Mine Warfare & Ship Self-Defence, 2015, 23( 1): 13- 16.
10 WEI Z, JIA Z, YAN Z P, et al. Leader-following consensus of discrete-time multi-AUV recovery system with time-varying delay[J]. Ocean Engineering, 2021, 219: 108258.
11 辛传龙. 基于USV的AUV对接回收系统设计与动力学特性研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2021.
XIN C L. Design and dynamic characteristics study of AUV recovery docking system based on USV[D]. Shenyang: Chinese Academy of Sciences, Shenyang Institute of Automation, 2021.
12 BAKER P. AUV launch and recovery: A key enabling technology for organic MCM Operations[J]. Engineers Australia, 2013: 190- 199.
13 WIGLEY R, PROCTOR A A, SIMPSON B. Novel AUV launch, recovery new approaches using combined USV-AUV method[J]. Sea Technology Worldwide Information Leader for Marine Business Science & Engineering, 2018, 59( 6): 24- 27.
14 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007, 29( 3): 267- 273. doi: 10.3321/j.issn:1002-0446.2007.03.014
YAN K C, WU L H. A survey on the key technologies for underwater AUV docking[J]. Robot, 2007, 29( 3): 267- 273.
doi: 10.3321/j.issn:1002-0446.2007.03.014
15 ALLEN B, AUSTIN T, FORRESTER N, et al. Au-tonomous docking demonstrations with enhanced REMUS technology[J]. Oceans, 2006, 18( 21): 1- 6.
16 KAWASAKI T, NOGUCHI T, FUKASAWA T, et al. Marine bird, a new experimental AUV-results of docking and electric power supply tests in sea trials[J]. Oceans, 2004, 3: 1738- 1744.
[1] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[2] 张嘉宁,张明路,李满宏,张坦. 面向灰库清理的超大伸缩比机械臂结构设计与刚度优化[J]. 工程设计学报, 2022, 29(4): 430-437.
[3] 王月朋,汪步云. 下肢外骨骼助力机器人动力学建模及实验研究[J]. 工程设计学报, 2022, 29(3): 358-369.
[4] 叶锦涛, 刘凤丽, 郝永平, 刘双杰, 郭梦辉, 冯卓航. 一种超低空飞行的仿生扑翼飞行器的设计及分析[J]. 工程设计学报, 2021, 28(4): 473-479.
[5] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[6] 张锦, 刘佩珊, 殷玉枫. Y形旋转超声波马达的设计与动态特性分析[J]. 工程设计学报, 2021, 28(2): 248-254.
[7] 崔雅筠, 郭安福, 姜涛, 李俊颉, 李永鑫. 可连续取水的移动应急净水车结构设计与分析[J]. 工程设计学报, 2021, 28(1): 105-111.
[8] 李琴, 陈言, 黄志强, 高兆鑫, 陈振, 敬爽, 付春丽. 极端海况下FPSO模块支墩的动态力学分析与试验研究[J]. 工程设计学报, 2020, 27(6): 698-706.
[9] 李鹏举, 毛鹏军, 耿乾, 方骞, 张家瑞, 黄传鹏. 杜仲嫁接机器人矩阵式切削系统设计与试验分析[J]. 工程设计学报, 2020, 27(6): 744-752.
[10] 宋智斌, 胡秀棋. 基于给定非线性刚度的柔顺驱动器设计及性能评估[J]. 工程设计学报, 2020, 27(4): 416-424.
[11] 曹鹏勇, 王建文. 基于STM8S105的智能车结构及控制系统的研究[J]. 工程设计学报, 2020, 27(4): 516-523.
[12] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[13] 任孟沂, 曹恩国, 赵永武, 杨滨, 崔宇田. 一种被动式外骨骼机械足的结构设计及优化[J]. 工程设计学报, 2020, 27(2): 199-211.
[14] 张旭, 刘素梅, 丁开忠, 陆坤. ITER真空绝热冷质支撑性能测试平台设计与研究[J]. 工程设计学报, 2020, 27(1): 121-127.
[15] 姚涛, 王志华, 段国林, 王涛. 基于Stewart并联机构的直驱式波能转换器能量转换性能研究[J]. 工程设计学报, 2019, 26(5): 587-593.