Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 358-369    DOI: 10.3785/j.issn.1006-754X.2022.00.048
建模、仿真、分析与决策     
下肢外骨骼助力机器人动力学建模及实验研究
王月朋1(),汪步云2,3()
1.安徽信息工程学院 机械工程学院,安徽 芜湖 241199
2.安徽工程大学 人工智能学院,安徽 芜湖 241000
3.安徽工程大学 机器人产业技术研究院,安徽 芜湖 241007
Dynamic modeling and experimental research of lower limb exoskeleton assisted robot
Yue-peng WANG1(),Bu-yun WANG2,3()
1.College of Mechanical Engineering, Anhui Institute of Information Technology, Wuhu 241199, China
2.School of Artificial Intelligence, Anhui Polytechnic University, Wuhu 241000, China
3.Institute of Technology Robotics Industry, Anhui Polytechnic University, Wuhu 241007, China
 全文: PDF(4249 KB)   HTML
摘要:

下肢外骨骼助力机器人存在人?机关节是否匹配、主动关节设计是否满足人体关节运动的驱动力要求等问题。为解决上述问题,基于所设计的电液伺服驱动下肢外骨骼助力机器人,将其简化为七连杆结构,并结合步态平衡理论,采用牛顿?欧拉法构建了其摆动相与支撑相瞬时动力学模型。然后,将不同步态相位下人体运动时的角度数据、速度数据及机器人结构参数代入牛顿?欧拉动力学迭代方程,求得机器人各关节的理论驱动力矩。最后,开展ADAMS(automatic dynamic analysis of mechanical systems,机械系统动力学自动分析)仿真实验和人机协同助行实验,通过对机器人各关节的驱动力矩峰值进行比较,验证了所构建动力学迭代方程的正确性和有效性。结果表明,通过采用牛顿?欧拉法来求解下肢外骨骼助力机器人关节的驱动力矩,可为其结构优化与控制策略制定提供重要的理论支撑。

关键词: 下肢外骨骼助力机器人动力学分析牛顿?欧拉法人机协同助行实验    
Abstract:

The lower limb exoskeleton assisted robot has problems such as whether the human-machine joints match, and whether the active joint design meets the driving force requirements of human joint during motion. In order to solve these problems, based on the designed electro-hydraulic servo driven lower limb exoskeleton assisted robot, by simplifying it into a seven-link structure, the instantaneous dynamic model of swing phase and support phase were constructed by Newton-Euler method combining with the gait balance theory. Then, the angle data, velocity data of human motion under different gait phases and the robot structure parameters were substituted into the Newton-Euler dynamic iteration equations to obtain the theoretical driving torque of each joint of the robot. Finally, the ADAMS (automatic dynamic analysis of mechanical systems) simulation experiment and human-machine cooperative walking aid experiment were carried out, and the correctness and effectiveness of the constructed dynamic iteration equations were verified by comparing the peak driving torque of each joint of the robot. The results showed that using the Newton-Euler method to solve the driving torque of the lower limb exoskeleton assisted robot joint could provide important theoretical support for its structural optimization and control strategy formulation.

Key words: lower limb exoskeleton assisted robot    dynamic analysis    Newton-Euler method    human-machine cooperative walking aid experiment
收稿日期: 2021-11-01 出版日期: 2022-07-05
CLC:  TH 113.2  
基金资助: 国家自然科学基金资助项目(61741101);安徽省重点研究与开发计划资助项目(202004a05020013);安徽省属公办普通本科高校领军骨干人才项目(2020年);安徽工程大学创新团队项目(2019年)
通讯作者: 汪步云     E-mail: ypwang19@iflytek.com;ayun@ahpu.edu.cn
作者简介: 王月朋(1992—),男,安徽安庆人,助教,硕士,从事人机交互与机器人控制研究,E-mail:ypwang19@iflytek.comhttp://orcid.org/0000-0002-7938-5948
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王月朋
汪步云

引用本文:

王月朋,汪步云. 下肢外骨骼助力机器人动力学建模及实验研究[J]. 工程设计学报, 2022, 29(3): 358-369.

Yue-peng WANG,Bu-yun WANG. Dynamic modeling and experimental research of lower limb exoskeleton assisted robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 358-369.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.048        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/358

图1  电液伺服驱动下肢外骨骼助力机器人的结构示意
方法优点缺点
牛顿?欧拉法求解过程详细,能求得各连杆的驱动力和力矩,且精度高推导过程繁琐,建模过程复杂,计算难度大
拉格朗日法推导过程较简单,能得到封闭形式方程,且方程的结构紧凑及不包含约束力,便于分析与计算计算效率较低,实时性差
凯恩法方程简单,计算效率高,避免了求导运算对复杂系统的求解精度低
虚功原理法运算效率较高,适用于静力学分析对动态运动的分析精度低
表1  不同动力学分析方法的优缺点比较
图2  人体行走步态周期示意
图3  下肢外骨骼助力机器人摆动相动力学模型
参数名称
θ1右腿踝关节角度
θ2右腿膝关节角度
θ3右腿髋关节角度
θ4人体质心偏转角度
θ5左腿髋关节角度
θ6左腿膝关节角度
θ7左腿踝关节角度
m1智能鞋质量
m2小腿质量
m3大腿质量
m4人体质量
L1智能鞋长度
L2小腿长度
L3大腿长度
LP髋关节到人体质心的距离
cii=1, 2, …, 7)各连杆的质心
表2  下肢外骨骼助力机器人动力学相关参数
图4  下肢外骨骼助力机器人矢状面摆动相简图
图5  下肢外骨骼助力机器人双支撑相动力学模型
图6  下肢外骨骼助力机器人矢状面双支撑相简图
参数量值
m10.8 kg
m20.4 kg
m30.5 kg
m430 kg
L175 mm(0.075 m)
L2420 mm(0.42 m)
L3480 mm(0.48 m)
LP300 mm(0.30 m)
表3  下肢外骨骼助力机器人结构参数取值
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节19.5918.622.01-59.89
右腿髋关节6.322.270.89-188.75
左腿膝关节60.2062.422.52-20.65
右腿膝关节16.4122.890.7531.73
表4  支撑相中期下肢外骨骼助力机器人各关节的动力学参数值
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节29.0033.83-0.8585.69
右腿髋关节31.1329.211.05-105.62
左腿膝关节28.9638.853.55-17.57
右腿膝关节26.3330.861.36-20.99
表5  支撑相末期下肢外骨骼助力机器人各关节的动力学参数值
关节角度/(°)角速度/(°/s)角加速度/(°/s2)驱动力矩/N·m
左腿髋关节14.425.84-0.35-133.18
右腿髋关节52.7036.781.8821.37
左腿膝关节24.8213.56-0.52-72.91
右腿膝关节50.3442.822.23-66.42
表6  摆动相中期下肢外骨骼助力机器人各关节的动力学参数值
图7  单个步态周期内下肢外骨骼助力机器人各关节驱动力矩的理论值
关节驱动力矩/N·m
最大值最小值
左腿髋关节332.88-232.02
右腿髋关节265.48-188.75
左腿膝关节259.69-184.51
右腿膝关节199.77-174.38
表7  单个步态周期内下肢外骨骼助力机器人各关节的驱动力矩理论峰值
图8  下肢外骨骼助力机器人的ADAMS动力学仿真模型
图9  下肢外骨骼助力机器人水平行走时的关节角度仿真结果
图10  下肢外骨骼助力机器人水平行走时的关节驱动力矩和液压缸驱动力仿真结果
图11  人机交互实验室
图12  Visual 3D步态分析软件
图13  人机协同助行实验现场
图14  下肢外骨骼助力机器人髋、膝关节角度对比
图15  下肢外骨骼助力机器人髋、膝关节驱动力矩对比
1 MA Y, WU X Y, YANG S X, et al. Online gait planning of lower-limb exoskeleton robot for paraplegic rehabilitation considering weight transfer process[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(2): 414-425. doi:10.1109/tase.2020.2964807
doi: 10.1109/tase.2020.2964807
2 韩亚丽,王兴松.下肢助力外骨骼的动力学分析及仿真[J].系统仿真学报,2013,25(1):61-67,73. doi:10.16182/j.cnki.joss.2013.01.032
HAN Ya-li, WANG Xing-song. Dynamic analysis and simulation of lower limb power-assisted exoskeleton[J]. Journal of System Simulation, 2013, 25(1): 61-67, 73.
doi: 10.16182/j.cnki.joss.2013.01.032
3 张燕,李梵茹,李威,等.基于人机耦合的下肢外骨骼动力学分析及仿真[J].应用数学和力学,2019,40(7):780-790. doi:10.21656/1000-0887.390212
ZHANG Yan, LI Fan-ru, LI Wei, et al. Dynamic analysis and simulation of the lower extremity exoskeleton based on human-machine interaction[J]. Applied Mathematics and Mechanics, 2019, 40(7): 780-790.
doi: 10.21656/1000-0887.390212
4 WATANABE H, TANAKA N, INUTA T, et al. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study[J]. Archives of Physical Medicine and Rehabilitation, 2014, 95(11): 2006-2012. doi:10.1016/j.apmr.2014.07.002
doi: 10.1016/j.apmr.2014.07.002
5 ESQUENAZI A, TALATY M, PACKEL A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine and Rehabilitation, 2012, 91(11): 911-921. doi:10.1097/phm.0b013e318269d9a3
doi: 10.1097/phm.0b013e318269d9a3
6 PANIZZOLO F A, GALIANA I, ASBECK A T, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13(1): 43. doi:10.1186/s12984-016-0150-9
doi: 10.1186/s12984-016-0150-9
7 陈春杰,张邵敏,王灿,等.基于稳定阈度分析的外骨骼动态步长规划方法[J].仪器仪表学报,2017,38(3):523-529. doi:10.3969/j.issn.0254-3087.2017.03.002
CHEN Chun-jie, ZHANG Shao-min, WANG Can, et al. Dynamic step length planning method based on stable threshold analysis for exoskeleton[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 523-529.
doi: 10.3969/j.issn.0254-3087.2017.03.002
8 KAZEROONI H. Human augmentation and exoskeleton systems in Berkeley[J]. International Journal of Humanoid Robotics, 2007, 4(3): 575-605. doi:10.1142/S0219843607001187
doi: 10.1142/S0219843607001187
9 何健,王海波,李雪峰,等.负重型下肢外骨骼液压动力单元的研究[J].液压与气动,2017(11):6-11.
HE Jian, WANG Hai-bo, LI Xue-feng, et al. Hydraulic power unit of lower limb power assisted exoskeleton[J]. Chinese Hydraulics & Pneumatics, 2017(11): 6-11.
10 NASIRI R, AHMADI A, AHMADABADI M N. Reducing the energy cost of human running using an unpowered exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(10): 2026-2032. doi:10.1109/tnsre.2018.2872889
doi: 10.1109/tnsre.2018.2872889
11 王永奉,赵国如,孔祥战,等.肌力协同补偿的无动力下肢外骨骼设计与分析[J].工程设计学报,2021,28(6):764-775. doi:10.3785/j.issn.1006-754X.2021.00.080
WANG Yong-feng, ZHAO Guo-ru, KONG Xiang-zhan, et al. Design and analysis of unpowered lower-limb exoskeleton with muscle strength synergistic compensation[J]. Chinese Journal of Engineering Design, 2021, 28(6): 764-775.
doi: 10.3785/j.issn.1006-754X.2021.00.080
12 汪步云,汪志红,许德章.下肢外骨骼助力机器人本体结构设计与运动学分析[J].机械科学与技术,2018,37(4):553-559. doi:10.13433/j.cnki.1003-8728.2018.0410
WANG Bu-yun, WANG Zhi-hong, XU De-zhang. Mechanical design and kinematics analysis on a wearable power-assisted robot for lower extremity exoskeleton[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(4): 553-559.
doi: 10.13433/j.cnki.1003-8728.2018.0410
13 汪步云,王月朋,梁艺,等.下肢外骨骼助力机器人关节驱动设计及试验分析[J].机械工程学报,2019,55(23):55-66. doi:10.3901/JME.2019.23.055
WANG Bu-yun, WANG Yue-peng, LIANG Yi, et al. Design on articular motion and servo driving with experimental analysis for lower limb exoskeleton robot[J]. Journal of Mechanical Engineering, 2019, 55(23): 55-66.
doi: 10.3901/JME.2019.23.055
14 王月朋.下肢外骨骼助力机器人稳定性判别研究[D].芜湖:安徽工程大学,2021:68-70.
WANG Yue-peng. Research on stability criterion of power-assisted robot for lower limb exoskeleton[D]. Wuhu: Anhui Polytechnic University, 2021: 68-70.
15 唐志勇,谭振中,裴忠才.下肢外骨骼机器人动力学分析与设计[J].系统仿真学报,2013,25(6):1338-1344.doi:10.16182/j.cnki.joss.2013.06.048
TANG Zhi-yong, TAN Zhen-zhong, PEI Zhong-cai. Design and dynamic analysis of lower extremity exoskeleton[J]. Journal of System Simulation, 2013, 25(6): 1338-1344.
doi: 10.16182/j.cnki.joss.2013.06.048
16 张铭奎,程文明,刘放.助力外骨骼负载特征与驱动特征耦合效应[J].浙江大学学报(工学版),2017,51(4):807-816. doi:10.3785/j.issn.1008-973X.2017.04.023
ZHANG Ming-kui, CHENG Wen-ming, LIU Fang. Coupling effect between load characteristics and joint driving characteristics of powered exoskeleton[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(4): 807-816.
doi: 10.3785/j.issn.1008-973X.2017.04.023
17 邓斌,赵英朋.新型下肢外骨骼机器人动力学仿真[J].机械设计与制造,2021(6):300-304. doi:10.3969/j.issn.1001-3997.2021.06.069
DENG Bin, ZHAO Ying-peng. Dynamics simulation of new exoskeleton robot[J]. Machinery Design & Manufacture, 2021(6): 300-304.
doi: 10.3969/j.issn.1001-3997.2021.06.069
18 董平,樊军,周东栋.基于助力式外骨骼系统的动力学分析与研究[J].机床与液压,2017,45(15):1-3. doi:10.3969/j.issn.1001-3881.2017.15.001
DONG Ping, FAN Jun, ZHOU Dong-dong. Dynamics analysis and study based on wearable exoskeleton system[J]. Machine Tool & Hydraulics, 2017, 45(15): 1-3.
doi: 10.3969/j.issn.1001-3881.2017.15.001
19 谢峥,王明江,黄武龙,等.基于实时步态分析的行走辅助外骨骼机器人系统[J].生物医学工程学杂志,2017,34(2):265-270. doi:10.7507/1001-5515.201607075
XIE Zheng, WANG Ming-jiang, HUANG Wu-long, et al. Exoskeleton robot system based on real-time gait analysis for walking assist[J]. Journal of Biomedical Engineering, 2017, 34(2): 265-270.
doi: 10.7507/1001-5515.201607075
20 李石磊.下肢外骨骼机器人步态规划与控制方法研究[D].哈尔滨:哈尔滨工业大学,2017:46-53.
LI Shi-lei. Gait planning and control method of lower extremity exoskeletal robot[D]. Harbin: Harbin Institute of Technology, 2017: 46-53.
21 郭冰菁,韩建海,李向攀,等.理疗师交互下的下肢康复训练机器人个性化步态规划方法[J].机器人,2018,40(4):479-490,499. doi:10.13973/j.cnki.robot.180139
GUO Bing-jing, HAN Jian-hai, LI Xiang-pan, et al. Personalized gait planning method for the lower-limb rehabilitation training robot with the physiotherapist interaction[J]. Robot, 2018, 40(4): 479-490, 499.
doi: 10.13973/j.cnki.robot.180139
[1] 刘晓瑜, 田颖, 张明路. 水下机械手动力学研究综述[J]. 工程设计学报, 2021, 28(4): 389-398.
[2] 叶锦涛, 刘凤丽, 郝永平, 刘双杰, 郭梦辉, 冯卓航. 一种超低空飞行的仿生扑翼飞行器的设计及分析[J]. 工程设计学报, 2021, 28(4): 473-479.
[3] 张锦, 刘佩珊, 殷玉枫. Y形旋转超声波马达的设计与动态特性分析[J]. 工程设计学报, 2021, 28(2): 248-254.
[4] 曹鹏勇, 王建文. 基于STM8S105的智能车结构及控制系统的研究[J]. 工程设计学报, 2020, 27(4): 516-523.
[5] 姚涛, 王志华, 段国林, 王涛. 基于Stewart并联机构的直驱式波能转换器能量转换性能研究[J]. 工程设计学报, 2019, 26(5): 587-593.
[6] 黄志强, 彭珣, 李刚. 可控震源振动器平板多频响应分析[J]. 工程设计学报, 2017, 24(6): 648-654.
[7] 刘铁男, 田松岩, 梁素钰, 李琳, 杜倩. 单轨车轨道部件的瞬态动力学分析[J]. 工程设计学报, 2016, 23(4): 352-357.
[8] 刘亚东, 杨忠炯, 周立强, 胥景. 湿喷机机械臂喷枪振动特性的研究[J]. 工程设计学报, 2013, 20(4): 303-308.
[9] 邱可, 何俊, 张晓妮, 董兴建, 赵永杰. 冗余驱动地震模拟台虚拟样机动力学分析[J]. 工程设计学报, 2012, 19(3): 187-191.
[10] 朱龙英, 王鹏, 崔振萍, 朱德帅. 轮履组合式环保机器人轮式行走分析[J]. 工程设计学报, 2012, 19(3): 196-202.
[11] 顾伟彬, 姚振强, 胡俊. 高速轧辊磨床微进给机构动力学分析[J]. 工程设计学报, 2007, 14(6): 460-463.