Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 362-371    DOI: 10.3785/j.issn.1006-754X.2023.00.037
机器人与机构设计     
基于人体动力学分析的下肢外骨骼助力设计及机构优化
陈贵亮(),李子浩,蔡超,李永超,杨冬()
河北工业大学 机械工程学院,天津 300401
Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis
Guiliang CHEN(),Zihao LI,Chao CAI,Yongchao LI,Dong YANG()
School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
 全文: PDF(3892 KB)   HTML
摘要:

为设计助力效果良好的被动式下肢外骨骼,基于对人体行走的运动和力学特征以及相关主要肌群的力学表现的分析,提出了一种下肢外骨骼优化设计方法。通过开展人体行走实验,获取人体运动学信息和足底反力,并将其用于驱动Anybody仿真,从而得到人体行走过程中下肢肌肉的力学数据。借助Hill肌肉模型建立人体矢状面内的髋关节肌肉-肌腱-骨骼简化模型,并在该模型中添加虚拟扭簧以模拟助力外骨骼的作用,形成人体-外骨骼一体化模型。在此基础上,对穿戴助力外骨骼行走时的人机交互力以及穿戴者的肌肉激活情况进行量化分析。建立以扭簧刚度为变量的肌肉激活程度、代谢能计算模型,并以代谢能最低为目标,利用粒子群算法对虚拟扭簧的刚度进行优化以获得最优值。据此,提出髋关节助力外骨骼机构设计方案,并以机构的辅助力矩与虚拟扭簧力矩差值最小为目标进行优化,得到机构中拉簧刚度和各个连杆尺寸的最优值,作为外骨骼机构设计参数。同时,制作髋关节助力外骨骼样机并开展助力行走实验。结果表明,穿戴该助力外骨骼行走时人体代谢能降低效果显著。研究方法可为其他下肢外骨骼的设计和分析提供借鉴。

关键词: 助力外骨骼人体动力学人体建模运动助力Hill肌肉模型    
Abstract:

In order to design a passive lower limb exoskeleton with good assisting effect, an optimal design method of lower limb exoskeleton was proposed based on the analysis of the motion and mechanical characteristics of human walking and the mechanical performance of the relevant major muscle groups. Through the human walking experiment, the kinematics information and plantar reaction force were obtained to drive the simulation of Anybody, and the mechanical data of lower limb muscles during walking were obtained. With the help of Hill muscle model, a simplified model of muscle?tendon?bone of hip joint in the sagittal plane of the human body was established, and a virtual torsion spring was added to simulate the role of exoskeleton, forming an integrated model of human body and exoskeleton. On this basis, the human-computer interaction force and the muscle activation of the wearer were quantitatively analyzed when wearing the assisted exoskeleton. The calculation models of muscle activation degree and metabolizable energy with torsion spring stiffness as variable were established, and the stiffness of virtual torsion spring was optimized by particle swarm optimization to obtain the optimal value with the goal of minimum metabolizable energy. Based on this, the design scheme of hip joint assisted exoskeleton mechanism was proposed, and the difference between the auxiliary torque of the mechanism and the virtual torsion spring torque was minimized as the goal to optimize, and the optimal values of the tension spring stiffness and the size of each connecting rod were obtained as the design parameters of the exoskeleton mechanism. At the same time, the prototype of hip joint assisted exoskeleton was made and the experiment of assisted walking was carried out. The results showed that the metabolic energy of human body was significantly reduced when wearing the assisted exoskeleton. The research method can provide reference for the design and analysis of other lower limb exoskeletons.

Key words: assisted exoskeleton    human dynamics    human modeling    motion assistance    Hill muscle model
收稿日期: 2022-09-30 出版日期: 2023-07-06
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(U1813222);河北省重点研发基金资助项目(19211816D)
通讯作者: 杨冬     E-mail: guiliang_chen@sina.com;88292946@qq.com
作者简介: 陈贵亮(1965—),男,河北张家口人,高级工程师,博士,从事服务型机器人技术研究,E-mail: guiliang_chen@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈贵亮
李子浩
蔡超
李永超
杨冬

引用本文:

陈贵亮,李子浩,蔡超,李永超,杨冬. 基于人体动力学分析的下肢外骨骼助力设计及机构优化[J]. 工程设计学报, 2023, 30(3): 362-371.

Guiliang CHEN,Zihao LI,Chao CAI,Yongchao LI,Dong YANG. Design and mechanism optimization of lower limb exoskeleton based on human dynamics analysis[J]. Chinese Journal of Engineering Design, 2023, 30(3): 362-371.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.037        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/362

图1  单个步态周期划分
图2  单个步态周期内髋关节的动力学仿真曲线
图3  Hill肌肉模型
肌肉Fmax/NLm0/cmLt0/cmPCSA/cm2

vmax/

(m/s)

股匠肌1 385.452 08.973 733.292 015.393 90.897 3
臀大肌716.419 317.329 46.945 37.960 21.732 9
腘绳肌2 607.622 59.775 335.174 228.973 59.775 2
髂腰肌565.556 35.278 09.742 96.283 95.278 0
表1  髋关节肌肉的基本参数
图4  髋关节肌肉-肌腱-骨骼简化模型
图5  髋关节各肌群肌力与等效肌力对比
图6  髋关节力矩对比
图7  髋关节-外骨骼耦合模型和外骨骼机构原理
图8  肌肉动力学逆向求解总框架
图9  髋关节外骨骼助力示意
图10  助力外骨骼对髋关节力矩的影响
图11  有无助力下髋关节肌群代谢功率曲线对比
图12  髋关节助力外骨骼辅助力矩对比
图13  髋关节助力外骨骼实验平台
图14  髋关节伸屈肌群的肌电信号采集结果
图15  髋关节伸屈肌群的平均肌电信号
1 TUDOR-LOCKE C, JOHNSON W D, KATZMARZYK P T. Accelerometer-determined steps per day in US adults[J]. Medicine & Science in Sports & Exercise, 2009, 41(7): 1384-1391.
2 ZIEGLER J, REITER A, GATTRINGER H, et al. Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data[J]. Medical Engineering & Physics, 2020, 84(3): 193-202.
3 GROOTE F D, FALISSE A. Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait[J]. Proceedings of the Royal Society B: Biological Sciences, 2021, 288(1946): 2432-2442.
4 AN K, LIU Y, LI Y, et al. Energetic walking gaits studied by a simple actuated inverted pendulum model[J]. Journal of Mechanical Science & Technology, 2018, 32(5): 2273-2281.
5 YE D, GALIANA I, ASBECK A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2): 119-130.
6 UMBERGER B R, RUBENSON J. Understanding muscle energetics in locomotion: new modeling and experimental approaches[J]. Exercise & Sport Sciences Reviews, 2011, 39(2): 59-67.
7 BARAZESH H, SHARBAFI M A. A biarticular passive exosuit to support balance control can reduce metabolic cost of walking[J]. Bioinspiration & Biomimetics, 2020, 15(3): 1024-1042.
8 HAUFE F L, WOLF P, RIENER R, et al. Biomechanical effects of passive hip springs during walking[J]. Journal of Biomechanics, 2020, 98: 109432.
9 SHEN Z, SAM S, ALLISON G, et al. A simulation-based study on a clutch-spring mechanism reducing human walking metabolic cost[J]. International Journal of Mechanical Engineering and Robotics Research, 2018, 7(1): 55-60.
10 胡冰山,程科,陆盛,等.变刚度储能助力髋外骨骼设计及助力效果仿真[J].系统仿真学报,2022,34(5):1090-1100. doi:10.16182/j.issn1004731x.joss.20-0994
HU B S, CHENG K, LU S, et al. Design of variable stiffness energy storage walking assist hip exoskeleton and simulation of assistance effect[J]. Journal of System Simulation, 2022, 34(5): 1090-1100.
doi: 10.16182/j.issn1004731x.joss.20-0994
11 DORN T W, SCHACHE A G, PANDY M G. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance[J]. Journal of Experimental Biology, 2012, 215(11): 1944-1959.
12 LI Z, LIU H, YIN Z, et al. Muscle synergy alteration of human during walking with lower limb exoskeleton[J]. Frontiers in Neuroscience, 2018, 29(12): 1050-1059.
13 ARNOLD E M, DELP S L. Fibre operating lengths of human lower limb muscles during walking[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366(1570): 1530-1539.
14 SAWICKI G S, KHAN N S. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(5): 914-923.
15 LEE H J, LEE S, CHANG W H, et al. A wearable hip assist robot can improve gait function and cardiopulmonary metabolic efficiency in elderly adults[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 252(9): 1549-1557.
16 NASIRI R, RAYATI M, AHMADABADI M N. Feedback from mono-articular muscles is sufficient for exoskeleton torque adaptation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 2097-2106.
17 ZAJAC F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control[J]. Critical Reviews in Biomedical Engineering, 1989, 17(4): 359-411.
18 BOGEY R A, BARNSE L A. An EMG-to-force processing approach for estimating in vivo hip muscle forces in normal human walking[J]. IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2016, 25(8): 1172-1179.
19 WENINHANDL J T, BENNETT H J. Musculoskeletal model choice influences hip joint load estimations during gait[J]. Journal of Biomechanics, 2019, 91: 124-132.
20 CHEN W B, WU S, ZHOU T C, et al. On the biological mechanics and energetics of the hip joint muscle-tendon system assisted by passive hip exoskeleton[J]. Bioinspiration & Biomimetics, 2019, 14(1): 016012.
21 王存金,董林杰,李杰,等.基于人行走能耗分析的踝关节外骨骼设计[J].机械工程学报,2021,57(19):79-92. doi:10.3901/jme.2021.19.008
WANG C J, DONG L J, LI J, et al. Design of ankle exoskeleton based on analysis on energy cost of human walking[J]. Journal of Mechanical Engineering, 2021, 57(19): 79-92.
doi: 10.3901/jme.2021.19.008
[1] 李明烁,孟令帅,谷海涛,曹新星,张明远. 基于 USVAUV布放回收系统设计与实现[J]. 工程设计学报, 2023, 30(5): 650-656.
[2] 李琦琦,徐向荣,张卉. 基于自适应神经网络的机械臂滑模轨迹跟踪控制[J]. 工程设计学报, 2023, 30(4): 512-520.
[3] 张栋,杨培,黄哲轩,孙凌宇,张明路. 爬壁机器人悬摆式磁吸附机构的设计与优化[J]. 工程设计学报, 2023, 30(3): 334-341.
[4] 丁杨,张明路,焦鑫,李满宏. 关节电机驱动六足机器人仿生结构设计与柔顺运动控制[J]. 工程设计学报, 2023, 30(2): 154-163.
[5] 张春燕,江毅文,杨杰,蒋新星. 可变向多地形移动全R副并联机器人[J]. 工程设计学报, 2023, 30(2): 189-199.
[6] 陈翼楠,蒲志新,郑珍妮. 一种具有力检测机制的新型血管介入手术机器人[J]. 工程设计学报, 2023, 30(1): 20-31.
[7] 张卉,朱永飞,刘雪飞,徐向荣. 基于模糊迭代Q-学习的冶金工业机器人轨迹跟踪控制研究[J]. 工程设计学报, 2022, 29(5): 564-571.
[8] 陆古月,邢强,赵蔚,马磊,张小萍,王文波. 昆虫飞行信息自动化采集装置的设计[J]. 工程设计学报, 2022, 29(5): 607-615.
[9] 高伟,张玮,谷海涛,孟令帅,高浩,赵志超. 大型深海AUV无动力螺旋下潜运动特性分析[J]. 工程设计学报, 2022, 29(3): 370-383.
[10] 刘庆祥,郭冰菁,韩建海,李向攀,黄明祥. 体感交互式上肢镜像康复训练机器人系统[J]. 工程设计学报, 2022, 29(2): 143-152.
[11] 李琴,贾英崎,黄玉峰,李刚,叶闯. 一种工业机器人多目标轨迹优化算法[J]. 工程设计学报, 2022, 29(2): 187-195.
[12] 郑雨辰, 鞠锋, 王旦, 孙敬滨, 王亚明, 陈柏. 航空发动机叶片检测机器人的设计与控制研究[J]. 工程设计学报, 2021, 28(5): 625-632.
[13] 辛传龙, 郑荣, 杨博. AUV水下对接系统设计与接驳控制方案研究[J]. 工程设计学报, 2021, 28(5): 633-645.
[14] 朱锦翊, 张春燕, 卢晨晖. 基于螺旋理论的管道蠕动并联机构的奇异性研究[J]. 工程设计学报, 2021, 28(3): 287-295.
[15] 王成军, 李帅. 三关节式软体驱动器的设计及其弯曲性能分析[J]. 工程设计学报, 2021, 28(2): 227-234.