Please wait a minute...
工程设计学报  2023, Vol. 30 Issue (3): 353-361    DOI: 10.3785/j.issn.1006-754X.2023.00.033
机器人与机构设计     
可适径调整管道清淤机器人结构设计与运动分析
李岳1(),邓云蛟1,敖然1,侯雨雷1(),曾达幸2
1.燕山大学 机械工程学院,河北 秦皇岛 066004
2.东莞理工学院 机械工程学院,广东 东莞 523808
Structure design and motion analysis of pipeline dredging robot with diameter adjustment
Yue LI1(),Yunjiao DENG1,Ran AO1,Yulei HOU1(),Daxing ZENG2
1.School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
2.School of Mechanical Engineering, Dongguan Institute of Technology, Dongguan 523808, China
 全文: PDF(3102 KB)   HTML
摘要:

为了实现布局复杂的城市地下管道的清淤,提出了一种基于并联机构的履带式管道清淤机器人。采用折展调姿行走装置以减小机器人体积,采用基于3-US并联机构的工作装置以增大机器人的工作空间;编写了机器人工作空间算法,通过MATLAB软件仿真得到了行走装置和工作装置的工作范围及运动轨迹;采用ADAMS软件模拟了机器人运动状态,并对其驱动特性参数进行分析,得到了行走装置在不同运动状态下驱动力和驱动力矩的变化规律,以及工作装置在不同方向极限位置转换时的驱动力矩。仿真研究表明了行走装置折展调姿的稳定性及工作装置在各个清淤极限位置间转换的灵活性。研究结果对可适径调整管道清淤机器人的研制与应用具有指导意义。

关键词: 管道机器人可适径调整工作空间并联机构    
Abstract:

In order to achieve the dredging of urban underground pipelines with complex layout, a tracked pipeline dredging robot based on parallel mechanism was proposed. Adopting a folding and posture adjustment walking device to reduce the robot's volume, and using a working device based 3-US parallel mechanism to increase the robot's workspace; a robot workspace algorithm was written, and the working range and motion trajectory of the walking device and working device were obtained by simulation through MATLAB software; the motion states of the robot were simulated by ADAMS software, and its driving characteristic parameters were analyzed. The variation rules of driving force and driving torque of the walking device under different motion states were obtained, as well as the driving torque of the working device when transitioning between extreme positions in different directions. Simulation study showed the stability of the walking device during folding and posture adjustment, as well as the flexibility of the working device in transitioning between various dredging limit positions. The research results have guiding significance for the development and application of pipeline dredging robot with diameter adjustment.

Key words: pipeline robot    diameter adjustment    workspace    parallel mechanism
收稿日期: 2022-09-02 出版日期: 2023-07-06
CLC:  TH113.2  
基金资助: 国家重点研发计划资助项目(2018YFB1307900);广东省普通高校机器人与智能装备重点实验室资助项目(2017KSYS009);东莞理工学院机器人与智能装备创新中心资助项目(KCYCXPT2017006);2021年东莞市科技特派员项目(20211800500242)
通讯作者: 侯雨雷     E-mail: ysu_liyue@163.com;ylhou@ysu.edu.cn
作者简介: 李 岳(1998—),男,河北承德人,博士生,从事智能机器人研究,E-mail: ysu_liyue@163.com,https://orcid.org/0000-0002-8180-4830
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李岳
邓云蛟
敖然
侯雨雷
曾达幸

引用本文:

李岳,邓云蛟,敖然,侯雨雷,曾达幸. 可适径调整管道清淤机器人结构设计与运动分析[J]. 工程设计学报, 2023, 30(3): 353-361.

Yue LI,Yunjiao DENG,Ran AO,Yulei HOU,Daxing ZENG. Structure design and motion analysis of pipeline dredging robot with diameter adjustment[J]. Chinese Journal of Engineering Design, 2023, 30(3): 353-361.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2023.00.033        https://www.zjujournals.com/gcsjxb/CN/Y2023/V30/I3/353

图1  管道清淤机器人的结构
图2  管道清淤机器人辅助导向装置的结构
图3  管道清淤机器人的状态
图4  竖直下放时的管道清淤机器人
图5  行走装置结构
图6  行走装置运动分析
图7  行走装置适径调整运动分析
图8  行走装置末端的运动范围
图9  行走装置末端的运动轨迹
图10  行走装置运动仿真
图11  行走装置进行折展运动时电机驱动力矩变化曲线
图12  行走装置进行折展运动时动臂电缸驱动力变化曲线
图13  行走装置进行折展运动时连杆电缸驱动力变化曲线
图14  工作装置和折展机构在车体内的分布
图15  3-US并联机构整体和分支坐标系
图16  工作装置的可达工作空间
图17  工作装置初始位置和侧向清淤极限位置
图18  工作装置在不同运动状态时电机驱动力矩变化曲线
图19  管道清淤机器人整机尺寸
1 NIAN S C, SUN H X, CHENG Y. Mechanism based on pipe cleaning apparatus of high-pressure water jet[C]// AER-Advances in Engineering Research. Paris: Atlantis Press, 2015, 21: 169-175.
2 陈晓鹂,李聪丽,李依璟,等.城市下水管道机器人造型设计[J].机械设计,2020,37(11):148.
CHEN X L, LI C L, LI Y J, et al. Design of robot for urban sewer pipeline[J]. Journal of Machine Design, 2020, 37(11): 148.
3 罗继曼,郭松涛,刘思远.管道机器人清淤装置振动稳定性研究[J].机械设计与制造,2022(1):242-246. doi:10.3969/j.issn.1001-3997.2022.01.055
LUO J M, GUO S T, LIU S Y. Study on vibration stability of pipeline robot dredging device[J]. Machinery Design & Manufacture, 2022(1): 242-246.
doi: 10.3969/j.issn.1001-3997.2022.01.055
4 李智强,李卫国,冯志成,等.管道机器人结构与通过性分析[J].机械传动,2021,45(6):146-152.
LI Z Q, LI W G, FENG Z C, et al. Structural and passability analysis of pipeline robot[J]. Journal of Mechanical Transmission, 2021, 45(6): 146-152.
5 芮宏斌,李路路,曹伟,等.轮-履-腿复合仿生机器人步态规划及越障性能分析[J].工程设计学报,2022,29(2): 133-142. doi:10.3785/j.issn.1006-754X.2022.00.031
RUI H B, LI L L, CAO W, et al. Gait planning and obstacle crossing performance analysis of wheel-walk-leg bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(2): 133-142.
doi: 10.3785/j.issn.1006-754X.2022.00.031
6 刘洪斌,冀楠.蠕动式管道机器人结构设计与运动特性分析[J].哈尔滨工程大学学报,2022,43(8):1169-1177. doi:10.11990/jheu.202110030
LIU H B, JI N. Structural design and motion characteristics analysis of peristaltic pipeline robots[J]. Journal of Harbin Engineering University, 2022, 43(8): 1169-1177.
doi: 10.11990/jheu.202110030
7 ZHAO Y T, HAN B L, LUO Q S, et al. Design and implementation of four-link robot crawler with variable structure[C]//IOP Conference Series: Materials Science and Engineering, 3rd International Conference on Automation, Control and Robotics Engineering. Chengdu, Jul. 19-22, 2018.
8 陈宗尧,颜国正,王坤东,等.关节履带式管道检测机器人越障性能优化[J]上海交通大学学报,2011,45(7): 1017-1020.
CHEN Z Y, YAN G Z, WANG K D, et al. The performance optimization of the articulated-tracked pipe-inspected robot for obstacle negotiation[J]. Journal of Shanghai Jiaotong University, 2011, 45 (7): 1017-1020.
9 张月,董雷,宦荣华,等.风电叶片管道内窥履带机器人的设计与运动分析[J].中国机械工程,2021,32(15): 1884-1889. doi:10.3969/j.issn.1004-132X.2021.15.015
ZHANG Y, DONG L, HUAN R H, et al. Design and kinematic analysis of crawler-type pipeline endoscope robots for wind turbine blades[J]. China Mechanical Engineering, 2021, 32 (15): 1884-1889.
doi: 10.3969/j.issn.1004-132X.2021.15.015
10 闫宏伟,焦彪彪,马建强,等.一种管道机器人的自适应主动螺旋式驱动机理分析[J].中国机械工程,2018,29(1): 21-29. doi:10.3969/j.issn.1004-132X.2018.01.004
YAN H W, JIAO B B, MA J Q, et al. Adaptive active screw driving mechanism analysis for pipeline robots[J]. China Mechanical Engineering, 2018, 29 (1): 21-29.
doi: 10.3969/j.issn.1004-132X.2018.01.004
11 ZHANG H, ZGAO L N, DAI X F. Hardware design of a pipeline inspection robot[J]. New Trends in Mechatronics and Materials Engineering, 2012, 151: 116-120.
12 NIAN S C, SUN H X, YANG W. Based on the three-dimensional pipeline network of a new type of wheel pipeline robot structure design and simulation[C]// International Conference on Informatics, Control and Automation. Lancaster: Destech Publications, 2015: 36-43.
13 王伟,赵少魁.管道机器人的研究现状及其展望[J].兵工自动化,2019,38(12):24-30.
WANG W, ZHAO S K. Development situation and key technologies of the pipeline robot[J]. Ordnance Industry Automation, 2019, 38 (12): 24-30.
14 ALIREZA A, YOSHINORI K, MASUMI I. A laser scanner for landmark detection with the sewer inspection Robot KANTARO[C]. IEEE/SMC International Conference on System of Systems Engineering. Los Angeles, Apr. 24-26, 2006.
15 刘大伟,刘佳佳.面向管道机器人的非对称惯性驱动系统及其动力学特性[J].中国机械工程,2020,31(18): 2189-2195,2205. doi:10.3969/j.issn.1004-132X.2020.18.006
LIU D W, LIU J J. Asymmetric inertia driving system for in-pipe robots and its dynamics characteristics[J]. China Mechanical Engineering, 2020, 31 (18): 2189-2195, 2205.
doi: 10.3969/j.issn.1004-132X.2020.18.006
16 梁亮,江华,唐勇,等.一种内螺旋管道机器人[J].中国机械工程,2014,25(24):3289-3294. doi:10.3969/j.issn.1004-132X.2014.24.005
LIANG L, JIANG H, TANG Y, et al. An inner spiral in-pipe robot[J]. China Mechanical Engineering, 2014, 25(24): 3289-3294.
doi: 10.3969/j.issn.1004-132X.2014.24.005
17 侯雨雷,敖然,王雷,等.可适径调整的并联式管道清淤机器人:CN202110291823.4[P].2021-05-28.
HOU Y L, AO R, WANG L, et al. Parallel pipe dredging robot with diameter adjustment: CN202110291823.4[P]. 2021-05-28.
18 LYU S N, ZLATANOV D, ZOPPI M, et al. Bundle folding type Ⅲ Bricard linkages[J]. Mechanism and Machine Theory, 2020, 144: 103663.
19 张云娇,魏国武,戴建生.基于旋量理论的3-US并联机构运动学分析[J].机械设计与研究,2014,30(2):8-11.
ZHANG Y J, WEI G W, DAI J S. Kinematic analysis of a 3-US parallel mechanism using screw theory[J]. Machine Design & Research, 2014, 30 (2): 8-11.
20 单彦霞,付冰双,李若松,等.基于并联机构的双重驱动管道机器人设计与研究[J].机械设计,2020,37(6):17-23.
SHAN Y X, FU B S, LI R S, et al. Design and research of the dual-actuated in-pipe robot based on the parallel mechanism[J]. Journal of Machine Design, 2020, 37(6): 17-23.
[1] 刘繁茂,廖灿灿,张原愿,莫寒. 新型碟式太阳能跟踪平台设计和姿态工作空间分析[J]. 工程设计学报, 2022, 29(5): 616-626.
[2] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[3] 卢佳伟, 张秋菊, 赵宏磊. 助老服务机器人设计及仿人运动研究[J]. 工程设计学报, 2020, 27(2): 269-278.
[4] 王晓明, 崔国华, 侯红娟, 刘健. 冗余驱动2SPR-2RPU并联机构的运动静力学及奇异性研究[J]. 工程设计学报, 2019, 26(5): 619-626.
[5] 姚涛, 王志华, 段国林, 王涛. 基于Stewart并联机构的直驱式波能转换器能量转换性能研究[J]. 工程设计学报, 2019, 26(5): 587-593.
[6] 王永奉, 范顺成, 刘更谦, 张小俊, 路光达. 一类具有弧形移动副的3-RPS并联机构研究[J]. 工程设计学报, 2017, 24(6): 717-724.
[7] 李保坤, 韩迎鸽, 郭永存, 曹毅, 王成军. Gough-Stewart并联机构无奇异位置路径规划[J]. 工程设计学报, 2016, 23(6): 544-552.
[8] 陈健伟, 朱大昌, 张荣兴, 朱城伟. 3-RPRR类平面全柔性并联机构拓扑优化设计[J]. 工程设计学报, 2016, 23(3): 251-255,270.
[9] 杨诗怡, 张峰峰, 范立成, 匡绍龙, 孙立宁. 放疗床多目标协调机构参数优化研究[J]. 工程设计学报, 2016, 23(3): 256-263.
[10] 王爱国, 陈健伟. 基于MATLAB的3-RPS并联机构控制系统仿真[J]. 工程设计学报, 2016, 23(2): 172-180.
[11] 周结华. 冗余驱动并联机构驱动力优化的新型算法设计[J]. 工程设计学报, 2015, 22(6): 534-539.
[12] 李保坤,郭永存,王传礼,曹 毅. Gough-Stewart并联机构姿态空间与全局姿态能力分析[J]. 工程设计学报, 2015, 22(5): 452-460.
[13] 王南,周海栋,崔国华,徐丰. 基于三转动并联机构的茶叶筛分装置运动学性能研究[J]. 工程设计学报, 2014, 21(3): 266-272.
[14] 谭兴强, 贾舒媛, 谢志江. 6_PUS并联机器人动力学性能参数优化设计[J]. 工程设计学报, 2013, 20(6): 470-475.
[15] 谢俊, 刘月, 肖朝蓬, 杨启志, 邓辉. 三自由度并联物料振动分拣平台机构设计及运动仿真[J]. 工程设计学报, 2013, 20(6): 501-506.