Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (6): 717-724    DOI: 10.3785/j.issn.1006-754X.2017.06.016
通用零部件设计     
一类具有弧形移动副的3-RPS并联机构研究
王永奉1, 范顺成1, 刘更谦1, 张小俊1, 路光达2
1. 河北工业大学 机械工程学院, 天津 300130;
2. 天津职业技术师范大学 自动化与电气工程学院, 天津 300222
Research on a class of 3-RPS parallel mechanism with arc prismatic pairs
WANG Yong-feng1, FAN Shun-cheng1, LIU Geng-qian1, ZHANG Xiao-jun1, LU Guang-da2
1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China;
2. School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
 全文: PDF(8229 KB)   HTML
摘要:

现有3-RPS并联机构运动支链中部的消极驱动副都采用直线移动副,导致机构的灵活度、承载能力均不高。基于TRIZ曲面化(Spheroidality)原理,通过改变运动副的形状以及增加运动副之间的接触面积,来提高机构的灵活度以及承载能力。提出了3种具有弧形移动副的3-RPS并联机构,其运动支链均由1个转动副R、1个弧形移动副P和1个球铰S构成。其中第1种并联机构的驱动副轴线共线,第2种的驱动副轴线相互平行,第3种的驱动副轴线共面并彼此相交。采用螺旋理论,建立运动支链中运动副在一般位形下的运动螺旋形式,并分析动平台所受的约束力,实现对这些机构自由度、运动特性和灵巧度的求解。结果表明:第1种机构的动平台转动中心为弧形连杆的中心,动平台绕Z轴的旋转相对其他2个方向的旋转具有解耦性,第2、第3种机构的动平台转动中心是各支链球铰中心与弧形连杆中心连线的交点,此交点随动平台位姿的变化而变化;此外,这3种机构的灵巧度较高,而第1种机构的灵巧度高于后2种机构,第2、第3种机构的灵巧度相同。这3种机构具有结构对称、机构简单、刚度高、承载能力大等特性,可应用于虚轴机床、航空模拟设备、医疗设备等领域。

关键词: 并联机构TRIZ螺旋理论自由度灵巧度    
Abstract:

The middle of kinematic chain in existing 3-RPS parallel mechanisms possess a passive straight prismatic pair, lead to lower dexterity and load capacity of mechanisms. Based on the theory of Spheroidality of TRIZ, the dexterity and load capacity of mechanisms can be improved by changing shape and increasing the contact area of the pairs. Three types of 3-RPS parallel mechanisms with arc prismatic pairs were proposed, for the limb kinematic chain consisted of a revolute pair R, a prismatic pair P and a spherical joint S. The axes of drive pairs in those three types of mechanisms were collinear, parallel, intersect each other and coplanar, respectively. The screw formulations of kinematic joints under ordinary configuration were establishedby using the screw theory and the constraint force screws of moving platform were analyzed, which were employed to solve the degree of freedom, motion characteristics and dexterity of those parallel mechanisms. Results demonstrated the rotational center of moving platform was the center of arc of arc rods in the first type of mechanism,and moving platform rotating around the Z-axis with respect to the other two directions was decoupled. For the second and third type of mechanism, the rotational center was an intersection point of three straight lines, which was passed through each center of arc rod and the center of spherical joint, and this intersection point was changed with the posture of the moving platform. In addition, these mechanisms had high dexterity, and the dexterity of the first type of mechanism was higher than other two mechanisms, the dexterity of last two mechanisms were the same essentially. These mechanisms have some characteristics like symmetric and simple structure, high rigidity and large load capacity. Therefore, it can be widely used in virtual axle machine tool, flight simulator and medical equipment fields.

Key words: parallel mechanism    TRIZ    screw theory    mobility    dexterity
收稿日期: 2017-03-17 出版日期: 2017-12-28
CLC:  TH112  
基金资助:

国家自然科学基金资助项目(51105359);天津市科技特派员项目(15JCTPC56700)

通讯作者: 范顺成(1955-),男,河北邢台人,教授,博士,从事特种机构、并联机构及踝关节康复机构等研究,E-mail:shch@jsmail.hebut.edu.cn,http://orcid.org/0000-0003-1063-4587     E-mail: shch@jsmail.hebut.edu.cn
作者简介: 王永奉(1984-),男,湖北黄冈人,博士生,从事并联机器人、踝关节康复机器人及可穿戴防护设备等研究,E-mail:wyf841023@126.com,http://orcid.org/0000-0001-9079-6054
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王永奉
范顺成
刘更谦
张小俊
路光达

引用本文:

王永奉, 范顺成, 刘更谦, 张小俊, 路光达. 一类具有弧形移动副的3-RPS并联机构研究[J]. 工程设计学报, 2017, 24(6): 717-724.

WANG Yong-feng, FAN Shun-cheng, LIU Geng-qian, ZHANG Xiao-jun, LU Guang-da. Research on a class of 3-RPS parallel mechanism with arc prismatic pairs[J]. Chinese Journal of Engineering Design, 2017, 24(6): 717-724.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.06.016        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I6/717

[1] 黄真,孔令富,方跃法.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:29-30. HUANG Zhen, KONG Ling-fu, FANG Yue-fa. Theory and control of parallel robotic mechanisms manipulator[M]. Beijing:China Machine Press, 1997:29-30.
[2] HUNT K H. Kinematic geometry of mechanisms[M]. New York:Oxford University Press, 1978:886-903.
[3] 谢志江,梁欢,宋代平.基于连续蚁群算法的3-RPS并联机构正解[J].中国机械工程,2015,26(6):799-803. XIE Zhi-jiang, LIANG Huan, SONG Dai-ping. Forward kinematics of 3-RPS parallel mechanism based on a continuous aut colony algorithm[J]. China Mechanical Engineering, 2015, 26(6):799-803.
[4] 毛冰滟,谢志江,吴小勇,等.基于引导人工蜂群算法的3-RPS并联机构正解优化[J].农业机械学报,2017,48(1):339-345. MAO Bing-yan, XIE Zhi-jiang, WU Xiao-yong, et al. Forward kinematics optimization of 3-RPS parallel manipulator based on global-best artificial bee colony algorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(1):339-345.
[5] 胡映光,胡明,刘军红.基于混合遗传算法的3-RPS并联机构正解[J].组合机床与自动化加工技术,2017(6):34-36. HU Ying-guang, HU Ming, LIU Jun-hong. Forward kinematic for 3-RPS parallel mechanism based on hybrid genetic algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2017(6):34-36.
[6] 陈长忆,车林仙.应用粒子群算法的3-RPS并联机器人机构位置正解[J].现代制造工程,2017(5):77-79. CHEN Chang-yi, CHE Lin-xian. Forward position analysis of 3-RPS in-parallel manipulators based on particle swarm optimization[J]. Modern Manufacturing Engineering, 2017(5):77-79.
[7] 张伟,高洪,陈玉,等.基于改进粒子群算法的3-RPS并联机构正解研究[J].井冈山大学学报(自然科学版),2016,37(4):63-67. ZHANG Wei, GAO Hong, CHEN Yu, et al. Forward kinematics study of 3-RPS parallel mechanism based on improved particle swarm optimization[J]. Journal of Jinggangshan University(Natural Science), 2016, 37(4):63-67.
[8] 高峰,黄玉美,史文浩,等.3-RPS并联机构工作空间分析的球坐标搜索法[J].西安理工大学学报,2001,17(3):239-242. GAO Feng, HUANG Yu-mei, SHI Wen-hao, et al. The sphere-coordinate searching method of the workspace analysis of the 3-RPS parallel mechanism[J]. Journal of Xi'an University of Technology, 2001, 17(3):239-242.
[9] 蒲志新,李艳梅,于英华.3-RPS并联机器人工作空间分析及参数研究[J].机械传动,2015,39(1):17-21. PU Zhi-xin, LI Yan-mei, YU Ying-hua. Study on workspace and structural parameters of 3-RPS parallel robot[J]. Journal of Mechanical Transmission, 2015, 39(1):17-21.
[10] 张斌,马春生,郝亮亮,等.两种方法对比分析3-RPS机构的工作空间[J].煤矿机械,2016,37(1):248-250. ZHANG Bin, MA Chun-sheng, HAO Liang-liang, et al. Study on workspace of 3-RPS mechanism in two methods[J]. Coal Mine Machinery, 2016, 37(1):248-250.
[11] 周兵,毛泰祥,杨汝清.3自由度RPS并联机构的工作空间分析[J].湖南大学学报(自然科学版),2003,30(1):58-61. ZHOU Bing, MAO Tai-xiang, YANG Ru-qing. Workspace analysis of 3-DOF RPS parallel mechanism[J]. Journal of Hunan University (Natural Sciences), 2003, 30(1):58-61.
[12] 原政.3-RPS和3-SPR机构的工作空间差异分析[J].机械工程与自动化,2015(6):170-171. YUAN Zheng. Analysis of workspace differences between 3-RPS and 3-SPR mechanisms[J]. Mechanical Engineering & Automation, 2015(6):170-171.
[13] 朱大昌,冯文结,刘运鸿.基于影响系数3-RPS并联机构运动学分析与仿真[J].机械传动,2014,38(3):76-79. ZHU Da-chang, FENG Wen-jie, LIU Yun-hong. Kinematics analysis and simulation of 3-RPS parallel mechanism based on the influence coefficient[J]. Journal of Mechanical Transmission, 2014, 38(3):76-79.
[14] 方跃法,黄真.三自由度3-RPS并联机器人机构的运动分析[J].机械科学与技术,1997,16(1):82-88. FANG Yue-fa, HUANG Zhen. Kinematic analysis of 3-RPS parallel robot mechanism[J]. Mechanical Science and Technology for Aerospace Engineering, 1997, 16(1):82-88.
[15] 齐大志,张彦婓,宫金良.转动轴线共面型3-RPS并联机构运动特性分析[J].机械设计与制造,2014(9):235-237. QI Da-zhi, ZHANG Yan-fei, GONG Jin-liang. Kinetic characteristics analysis of 3-RPS parallel mechanism with coplanar rotation axes[J]. Machinery Design & Manufacture, 2014(9):235-237.
[16] 彭中波,黄玉美,马建辉,等.3-RPS并联机构奇异位形分析[J].组合机床与自动化加工技术,2004(7):31-32. PENG Zhong-bo, HUANG Yu-mei, MA Jian-hui, et al. Singularity analysis of 3-RPS parallel manipulators[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2004(7):31-32.
[17] LI Qin-chuan, XIANG Ji-nan, CHAI Xin-xue, et al. Singularity analysis of a 3-RPS parallel manipulator using geometric algebra[J]. Chinese Journal of Mechanical Engineering, 2015, 28(6):1204-1212.
[18] 落海伟,张俊,王辉,等.3-RPS并联机构静刚度建模方法[J].天津大学学报(自然科学与工程技术版),2015,48(9):797-803. LUO Hai-wei, ZHANG Jun, WANG Hui, et al. Static stiffness modeling method of 3-RPS PKM[J]. Journal of Tianjin University(Science and Technology),2015,48(9):797-803.
[19] 郑魁敬,崔培,郭海军.3-RPS并联机构运动与静力特性分析[J].机械设计,2011,28(9):28-33. ZHENG Kui-jing, CUI Pei, GUO Hai-jun. Kinematics and static characteristics analysis of 3-RPS parallel mechanism[J]. Journal of Machine Design, 2011, 28(9):28-33.
[20] 程刚,葛世荣.3-RPS对称并联式机械腿误差模型及分析[J].中国矿业大学学报,2009,38(1):50-55. CHENG Gang, GE Shi-Rong. Error model and analysis of 3-RPS symmetrical parallel robot leg with three degree-of-freedom[J]. Journal of China University of Mining & Technology, 2009, 38(1):50-55.
[21] 李新友,陈五一,韩先国.基于正交设计的3-RPS并联机构精度分析与综合[J].北京航空航天大学学报,2011,37(8):979-984. LI Xin-you, CHEN Wu-yi, HAN Xian-guo. Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(8):979-984.
[22] 陆成松,车建明.TRIZ技术在自动化打孔装订机进给系统创新设计中的应用[J].机械设计,2005,22(11):54-56. LU Cheng-song, CHE Jian-ming. Application of TRIZ technique in the innovation design for feeding system of automatic hole punching and bookbinding machine[J]. Journal of Machine design, 2005, 22(11):54-56.
[23] 王永奉,赵国如,杨静,等.三支链三自由度并联机构:201610902874.5[P].2016-10-17. WANG Yong-feng, ZHAO Guo-ru, YANG Jing, et al. Three-chain three-degree-of-freedom parallel mechanism:201610902874.5[P]. 2016-10-17.
[24] PALPACELLI M C, CARBONARI L, PALMIERI G. Analysis and design of a reconfigurable 3-DOF parallel manipulator for multimodal tasks[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4):1975-1985.
[25] ZHANG Fan, YANG Jian-guo. Type synthesis of instantaneous motion-free 2R1T parallel mechanism by IMGA method[C]//2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, Jun. 26-28, 2010.
[26] 李仕华,李秦川,黄真.3-TPT并联机构的瞬时运动特性[J].机械科学与技术,2003,22(3):456-463. LI Shi-hua, LI Qin-chuan, HUANG Zhen. The instantaneous motion characteristics of 3-TPT parallel mechanism[J]. Mechanical Science and Technology, 2003, 22(3):456-463.
[1] 白仲航,艾琳璟. 基于功能表面驱动与可拓工具的产品人机工程问题确定方法研究[J]. 工程设计学报, 2023, 30(5): 531-544.
[2] 李岳,邓云蛟,敖然,侯雨雷,曾达幸. 可适径调整管道清淤机器人结构设计与运动分析[J]. 工程设计学报, 2023, 30(3): 353-361.
[3] 刘繁茂,廖灿灿,张原愿,莫寒. 新型碟式太阳能跟踪平台设计和姿态工作空间分析[J]. 工程设计学报, 2022, 29(5): 616-626.
[4] 杨世香, 李文强. 焚烧灰处理装备密封结构的创新设计[J]. 工程设计学报, 2021, 28(6): 679-686.
[5] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[6] 朱锦翊, 张春燕, 卢晨晖. 基于螺旋理论的管道蠕动并联机构的奇异性研究[J]. 工程设计学报, 2021, 28(3): 287-295.
[7] 张璞, 王峻峰, 高一聪, 张雪健. 集成ADTRIZ的箱式电梯防疫功能创新设计[J]. 工程设计学报, 2021, 28(3): 305-311.
[8] 李琴, 陈言, 黄志强, 高兆鑫, 陈振, 敬爽, 付春丽. 极端海况下FPSO模块支墩的动态力学分析与试验研究[J]. 工程设计学报, 2020, 27(6): 698-706.
[9] 白仲航, 宋现显, 李美, 张鹏. 基于虚拟仿真与TRIZ的产品人机工程问题解决方法研究[J]. 工程设计学报, 2020, 27(5): 541-551.
[10] 余波, 赵武, 陈领, 高明忠, 何志强, 万浩. 深部岩层原位保真取心主动保温系统创新设计[J]. 工程设计学报, 2020, 27(4): 407-415.
[11] 李海月, 程泽, 赵丹妮, 王浩威, 李德勇, 张加波, 宋晓东, 赵琳娜. 基于悬吊法和气浮法的多自由度微重力模拟展开试验系统研究[J]. 工程设计学报, 2020, 27(4): 508-515.
[12] 鲁玉军, 沈佳锋, 王春青. 基于TRIZ的专利群规避方法研究与应用[J]. 工程设计学报, 2020, 27(1): 27-35.
[13] 贺晓莹, 高兴宇, 王海舰, 彭艳华, 李煜. 七自由度双臂协作机器人操作稳定性分析[J]. 工程设计学报, 2019, 26(6): 706-713.
[14] 王晓明, 崔国华, 侯红娟, 刘健. 冗余驱动2SPR-2RPU并联机构的运动静力学及奇异性研究[J]. 工程设计学报, 2019, 26(5): 619-626.
[15] 姚涛, 王志华, 段国林, 王涛. 基于Stewart并联机构的直驱式波能转换器能量转换性能研究[J]. 工程设计学报, 2019, 26(5): 587-593.