Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 706-713    DOI: 10.3785/j.issn.1006-754X.2019.00.003
建模、仿真、分析与决策     
七自由度双臂协作机器人操作稳定性分析
贺晓莹1,2, 高兴宇1,2, 王海舰1,2, 彭艳华1,2, 李煜1,2
1.桂林电子科技大学 机电工程学院, 广西桂林 541004
2.桂林电子科技大学 广西制造系统与先进制造技术重点实验室, 广西桂林 541004
Stability analysis of 7-DOF dual-arm cooperative robot operation
HE Xiao-ying1,2, GAO Xing-yu1,2, WANG Hai-jian1,2, PENG Yan-hua1,2, LI Yu1,2
1.School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China
2.Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, Guilin University of Electronic Technology, Guilin 541004, China
 全文: PDF(2337 KB)   HTML
摘要: 为了验证七自由度双臂协作机器人在复杂环境下的操作适应性和稳定性,以及提高机器人工作效率和协调性能,提出一种结合MATLAB和ADAMS的数值分析方法,对七自由度双臂协作机器人的空间运作模式进行分析和计算。首先,在Solidworks中建立七自由度双臂协作机器人的三维模型;然后,运用结合MATLAB和ADAMS的数值分析方法计算七自由度机械臂的运动学逆解;最后,运用基于虚拟动力学模型的控制方法,仿真七自由度双臂协作机器人在复杂环境下的夹取与搬运作业,以验证运动学逆解和分析双臂作业的适应性和稳定性。由仿真结果得到:双臂到达目标位置的X向误差为0.6 mm,Y向误差为0.5 mm,Z向误差为0.9 mm;到达预设位置的平均误差为0.5 mm;双臂协同抓取目标物成功率可达99.1%。由此可见,七自由度机械臂的运动学逆解满足预期要求,七自由度双臂协作机器人在复杂环境下的操作适应性和稳定性有所增强。
关键词: 七自由度机械臂运动学逆解操作    
Abstract: To verify the adaptability and stability of the 7-DOF (7 degree-of-free) dual-arm cooperative robot operation in the complex environment, and to improve the working efficiency and coordination performance, a numerical analysis method combining MATLAB and ADAMS was proposed to analyze and calculate the space operation mode of 7-DOF dual-arm cooperative robot. Firstly, the three-dimensional model of 7-DOF dual-arm cooperative robot was established in Solidworks. Secondly, the kinematics inverse solution of 7-DOF manipulator was calculated by using the numerical analysis method combining MATLAB and ADAMS. Finally, the control method based on virtual dynamics model was used to simulate the 7-DOF dual-arm cooperative robot clamping and moving operation in complex environment, the kinematics inverse solution was verified, and the adaptability and stability of the 7-DOF dual-arm cooperative robot were analyzed. The simulation results showed that the X-direction error, Y-direction error, and Z-direction error of the dual-arm reaching the target position were 0.6, 0.5 and 0.9 mm, respectively. In addition, the average error of the dual-arm reaching the goal position was 0.5 mm, and the success rate of dual-arm co-grasping target was 99.1%. It is suggested that the kinematics inverse solution of 7-DOF manipulator can satisfy the expectation, and the adaptability and stability of the 7-DOF dual-arm cooperative robot operation in the complex environment have increased.
Key words: 7-DOF manipulator    kinematics    inverse kinematics    operation
收稿日期: 2019-06-17 出版日期: 2019-12-28
CLC:  TP 242  
基金资助: 国家自然科学基金资助项目(51805104);广西创新驱动发展专项资金资助项目(桂科AA18118002-3);桂林电子科技大学研究生教育创新计划资助项目(2019YCXS006)
通讯作者: 高兴宇(1981—),男,广西桂林人,教授,博士生导师,博士,从事协同机器人技术、机器视觉检测技术以及智能制造与智能工厂规划技术等研究,E-mail:gxy1981@guet.edu.cn,https://orcid.org/0000-0002-4390-6836     E-mail: gxy1981@guet.edu.cn
作者简介: 贺晓莹(1993—),女,山西临汾人,硕士生,从事协同机器人技术、机器人控制研究,E-mail:1004903780@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贺晓莹
高兴宇
王海舰
彭艳华
李煜

引用本文:

贺晓莹, 高兴宇, 王海舰, 彭艳华, 李煜. 七自由度双臂协作机器人操作稳定性分析[J]. 工程设计学报, 2019, 26(6): 706-713.

HE Xiao-ying, GAO Xing-yu, WANG Hai-jian, PENG Yan-hua, LI Yu. Stability analysis of 7-DOF dual-arm cooperative robot operation. Chinese Journal of Engineering Design, 2019, 26(6): 706-713.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.003        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/706

[1] SHI L L, JAYAKOBY H, KATUPITIYA J, et al. Coordinated control of a dual-arm space robot[J]. IEEE Robotics & Automation Magazine, 2018, 25(4): 86-95.doi:10.1016/j.actaastro.2017.06.009
[2] 刘冠隆,贺晓莹,高兴宇,等. 基于旋量理论的七自由度双臂机器人正向运动学和工作空间分析研究[J].机械科学与技术,2019,38(5):704-712. doi:10.13433/j.cnki.1003-8728.20180240 LIU Guan-long, HE Xiao-ying, GAO Xing-yu, et al. The forward kinematics and workspace analysis of the screw theory of seven DOF dual-arm robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 704-712.
[3] TUAN L A, JOO Y H, TIEN L Q, et al. Adaptive neural network second-order sliding mode control of dual arm robots[J]. International Journal of Control Automation and Systems, 2017, 15(6): 2883-2891.doi:10.1007/s12555-017-0026-1
[4] KALLU K D, JIE W, LEE M C. Sensorless reaction force estimation of the end effector of a dual-arm robot manipulator using sliding mode control with a sliding perturbation observer[J]. International Journal of Control Automation and Systems, 2018, 16(3): 1367-1378. doi:10.1007/s12555-017-0154-7
[5] JIN S, BAE J, KIM J, et al. Disturbance compensation of a dual-arm underwater robot via redundant parallel mechanism theory[J]. Meccanica, 2017, 52(7): 1711-1719. doi:10.1007/s11012-016-0505-0
[6] TALASAZ A, TREJOS A L, PATEL R V. The role of direct and visual force feedback in suturing using a 7-DOF dual-arm teleoperated system[J]. IEEE Transactions on Haptics, 2017, 10(2): 276-287. doi:10.1109/toh.2016.2616874
[7] YAO Yao, WENG Zheng-xin. A motion simulation for dual-arm robot based on the state-space method[C]//2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, Jul. 17, 2017. doi:10.1109/CCDC.2017.7979370
[8] 刘卫朋, 邢关生, 陈海永, 等. 基于增强学习的机械臂轨迹跟踪控制[J].计算机集成制造系统,2018,24(8): 1996-2004. doi:10.13196/j.cims.2018.08.011 LIU Wei-peng, XING Guan-sheng, CHEN Hai-yong, et al. Robotic trajectory tracking control method based on reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1996-2004.
[9] ZHANG Fu-hai, QU Jia-di, LIU He, et al. A pose/force symmetric coordination method for a redundant dual-arm robot[J]. Assembly Automation, 2018, 38(5): 678-688.doi:10.1108/AA-12-2017-171
[10] CHOI Y, KIM D, HWANG S, et al. Dual-arm robot motion planning for collision avoidance using B-spline curve[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6): 835-843. doi:10.1007/s12541-017-0099-z
[11] LIU Yi-cheng, YU Chun-xiao, SHENG Jing-yuan, et al. Self-collision avoidance trajectory planning and robust control of a dual-arm space robot[J]. International Journal of Control Automation and Systems, 2018, 16(6): 2896-2905. doi:10.1007/s12555-017-0757-z
[12] 崔泽,韩增军. 基于自运动的仿人七自由度机械臂逆解算法[J].上海大学学报(自然科学版),2012,18(6): 589-595. doi:10.3969/j.issn.1007-2861.2012.06.008 CUI Ze, HAN Zeng-jun. Inverse kinematics algorithm of 7-DOF manipulator based on self-motion[J]. Journal of Shanghai University (Natural Science Edition), 2012, 18(6): 589-595.
[13] 徐立云,蔡炳杰,杨连生,等. 复杂机器人工位布局与运动时间的协同优化[J].计算机集成制造系统,2016,22(8):1867-1876. doi:10.13196/j.cims.2016.08.005 XU Li-yun, CAI Bing-jie, YANG Lian-sheng, et al. Collaborative optimization between station layout and robotic motion time for complicated stations[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1867-1876.
[14] 郑帅印. 七自由度仿人臂面向高速运动物体作业的轨迹规划[D].苏州:苏州大学机电工程学院,2018:26-40. ZHENG Shuai-yin. Trajectory optimization of 7-DOF humanoid manipulator for high speed movement target abstract[D]. Suzhou: Soochow University, School of Mechanical and Electrical Engineering, 2018: 26-40.
[15] 张建华,许晓林,刘璇,等. 双臂协调机器人相对动力学建模[J].机械工程学报,2019,55(3):34-42. doi:10.1109/robio.2018.8665193 ZHANG Jian-hua, XU Xiao-lin, LIU Xuan, et al. Relative dynamic modeling of dual-arm coordination robot[J]. Journal of Mechanical Engineering, 2019, 55(3): 34-42.
[16] 李明枫,贺晓莹,陆佳琪,等. 基于机器视觉的机器人智能分拣实验平台开发[J].实验技术与管理,2019,4(36):1002-4956. doi:10.16791/j.cnki.sjg.2019.04.021 LI Ming-feng, HE Xiao-ying, LU Jia-qi, et al. Development of robot intelligent sorting experimental platform based on machine vision[J]. Experimental Technology and Management, 2019, 4(36): 1002-4956.
[17] GARCIA N, SUAREZ R, ROSELL J. Task-dependent synergies for motion planning of an anthropomorphic dual-arm system[J]. IEEE Transactions on Robotics, 2017, 33(3): 756-764. doi:10.1109/TRO.2017.2676131
[18] FLEISCHER H, BAUMANN D, JOSHI S, et al. Analytical measurements and efficient process generation using a dual-arm robot equipped with electronic pipettes[J]. Energies, 2018, 11(10): 2567.doi:10.3390/en11102567
[1] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[2] 芮宏斌,李路路,曹伟,王天赐,段凯文,吴莹辉. --腿复合仿生机器人步态规划及越障性能分析[J]. 工程设计学报, 2022, 29(2): 133-142.
[3] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[4] 张洪, 邱晓天. 基于EtherCATROS全向移动导航系统[J]. 工程设计学报, 2021, 28(2): 241-247.
[5] 王雅坤, 任家骏, 李爱峰, 孟浩南. 矿用挖掘机驾驶室操作界面的布局优化设计[J]. 工程设计学报, 2020, 27(4): 469-477.
[6] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[7] 魏雅君, 邱国梁, 丁广和, 杨亮, 刘桁. 一种重载码垛机器人结构优化设计方法[J]. 工程设计学报, 2020, 27(3): 332-339.
[8] 张俊宝, 侯红娟, 崔国华, 刘健. 一类刚柔协作混联机器人机构的绳索数量和位置分布研究[J]. 工程设计学报, 2020, 27(3): 364-372.
[9] 刘卓, 连宾宾, 李祺. 基于有限和瞬时旋量理论的Exechon并联机器人运动学分析[J]. 工程设计学报, 2020, 27(3): 357-363.
[10] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[11] 贾慧波, 李程宇, 吴晓君, 刘小青, 李彦磊. 全向自动导引车导向机构设计及其运动控制研究[J]. 工程设计学报, 2018, 25(5): 546-552.
[12] 胡俊峰, 李永明, 郑昌虎. 基于模糊控制的微操作平台位置精度补偿方法[J]. 工程设计学报, 2018, 25(2): 123-130.
[13] 高征, 王璐, 郭钰莹. 索杆式风电叶片检测装置的运动学分析[J]. 工程设计学报, 2018, 25(2): 188-193.
[14] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.
[15] 王晨学, 平雪良, 徐超. 基于视觉辅助定位的机械臂运动学参数辨识研究[J]. 工程设计学报, 2018, 25(1): 27-34.