Please wait a minute...
工程设计学报  2018, Vol. 25 Issue (2): 230-236    DOI: 10.3785/j.issn.1006-754X.2018.02.015
通用零部件设计     
全向移动机器人驱动轮同步转向机构设计
阴贺生1,2, 张秋菊1,2, 宁萌1,2
1. 江南大学 机械工程学院, 江苏 无锡 214122;
2. 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot
YIN He-sheng1,2, ZHANG Qiu-ju1,2, NING Meng1,2
1. School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China
 全文: PDF(5666 KB)   HTML
摘要:

针对现有轮式全向移动机器人在工程实际应用中存在的驱动轮同步转向能力差的问题,设计了驱动轮同步转向机构。首先,基于虚拟样机技术分析了该同步转向机构的工作原理,并将它应用于轮式全向移动机器人。然后,利用运动学原理对加入同步转向机构机器人进行运动学分析,得到了电机输入转速与驱动轮转向速度之间的关系。最后,根据系统结构参数研制了一款主要应用于工厂物料搬运工作的产品样机并进行实验验证。机器人横向移动实验结果表明,该机器人可以通过不同方式进行全向移动,验证了该机器人的全向移动功能。研究表明同步转向机构的应用降低了轮式全向移动机器人控制难度,实现了机器人高速、高精度、高稳定性全向移动。

关键词: 全向移动机器人转向机构运动学分析齿轮传动驱动轮    
Abstract:

Aiming at the problem of poor synchronous steering capability existing wheeled omnidirectional mobile robot in practical engineering applications,a synchronous steering structure of driving wheel is designed. Firstly, the working mechanism of the synchronous steering mechanism was analyzed based on virtual prototyping technology. Then, the kinematics analysis of the robot with the synchronous steering mechanism was carried out based on the kinematics principle and the relationship between the motor input speed and the steering speed of the driving wheel was obtained. Lastly, according to the structural parameters of the system, a physical prototype of the robot which was mainly used in the material handling of the factory was manufactured and verified by experiment. The results of lateral movement experiment of the robot showed that this robot can move in all directions through different ways, which verified the omnidirectional moving function of the robot. The research indicates that the application of synchronous steering mechanism can reduce the control difficulty of wheeled omnidirectional mobile robot and realize the omnidirectional mobile robot with high speed, high precision and high stability.

Key words: omnidirectional mobile robot    steering mechanism    kinematics analysis    gear drive    drive wheel
收稿日期: 2017-06-06 出版日期: 2018-04-28
CLC:  TP242.6  
基金资助:

国家自然科学基金面上项目(51575236);2016年度江苏省普通高校专业学位研究生实践创新计划项目(SJLX16_0486)

通讯作者: 张秋菊(1963-),女,四川乐至人,教授,博士生导师,博士,从事机械动态分析与优化设计、机械CAD/CAE/CAM/CNC技术、数控与机器人技术等研究,E-mail:zhangqiuj@jiangnan.edu.cn     E-mail: zhangqiuj@jiangnan.edu.cn
作者简介: 阴贺生(1992-),男,山东肥城人,硕士生,从事智能装备与机器人技术研究,E-mail:6150805054@vip.jiangnan.edu.cn,http://orcid.org/0000-0003-3403-6231
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
阴贺生
张秋菊
宁萌

引用本文:

阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.

YIN He-sheng, ZHANG Qiu-ju, NING Meng. Design of synchronous steering mechanism of driving wheel for omnidirectional mobile robot. Chinese Journal of Engineering Design, 2018, 25(2): 230-236.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2018.02.015        https://www.zjujournals.com/gcsjxb/CN/Y2018/V25/I2/230

[1] BRUZZONE L, QUAGLIA G. Review article:locomotion systems for ground mobile robots in unstructured environments[J].Mechanical Sciences, 2012, 3(2):49-62.
[2] CONDURARU A, DOROFTEI I, CONDURARU I. An overview on the design of mobile robots with hybrid locomotion[J]. Advanced Materials Research, 2013, 837(3):555-560.
[3] 李智卿,马书根,李斌,等.具有自适应能力轮-履复合变形移动机器人的开发[J].机械工程学报,2011,47(5):1-10. LI Zhi-qing, MA Shu-gen, LI Bin, et al. Development of a transformable wheel-track robot with self-adaptive ability[J]. Journal of Mechanical Engineering, 2011, 47(5):1-10.
[4] 李允旺,葛世荣,朱华,等.四履带双摆臂机器人越障机理及越障能力[J].机器人,2010,32(2):157-165. LI Yun-wang, GE Shi-rong, ZHU Hua, et al. Obstacle-surmounting mechanism and capability of four-track robot with two swing arms[J]. Robot, 2010, 32(2):157-165.
[5] GHOTBI Bahareh,GONZÁLEZB Francisco, KÖVECSES József, et al. Mobility evaluation of wheeled robots on soft terrain:effect of internal force distribution[J]. Mechanism and Machine Theory, 2016, 256(3):259-282.
[6] CHAN Ronald Ping Man, STOL Karl A, HALKYARD C Roger, et al. Review of modelling and control of two-wheeled robots[J]. Annual Reviews in Control, 2013, 37(1):89-103.
[7] 黄涛,张豫南,田鹏,等.一种履带式全方位移动平台的设计与运动学分析[J].机械工程学报,2014,50(21):206-212. HUANG Tao, ZHANG Yu-nan, TIAN Peng, et al. Design & kinematics analysis of a tracked omnidirectional mobile platform[J]. Journal of Mechanical Engineering, 2014, 50(21):206-212.
[8] 熊光明,龚建伟,徐正飞,等.轮式移动机器人滑动转向研究综述[J].机床与液压,2003(6):9-12. XIONG Guang-ming, GONG Jian-wei, XU Zheng-fei, et al. Overview of research on skid-steer wheeled mobile robot[J]. Machine Tool & Hydraulics, 2003(6):9-12.
[9] RATNER Danny, MCKERROW Phillip.Navigating an outdoor robot along continuous landmarks with ultrasonic sensing[J]. Robotics and Autonomous Systems, 2003, 45(2):73-82.
[10] MIYATAH, OHKI M, YOKOUCHI Y, et al. Control of the autonomous mobile robot DREAM-1 for a parallel parking[J]. Mathematics and Computers in Simulation, 1996, 41(1/2):129-138.
[11] MAALOUF E, SAAD M, SALIAH H, et al. A higher level path tracking controller for a four-wheel differentially steered mobile robot[J]. Robotics and Autonomous Systems, 2006, 54(1):23-33.
[12] DUMITRASCU B, FILIPESCU A, RADASCHIN A, et al. Discrete-time sliding mode control of wheeled mobile robots[C]//20118th Asian Control Conference (ASCC),Taiwan, May 15-18, 2011.
[13] 王一治,常德功.Mecanum四轮全方位系统的运动性能分析及结构形式优选[J].机械工程学报,2009,56(5):307-310. WANG Yi-zhi, CHANG De-gong. Motion perf-romance analysis and layout selection for motion system with four Mecanum wheels[J]. Journal of Mechanical Engineering, 2009, 56(5):307-310.
[14] 熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,1996:91-113. XIONG You-lun. Fundamentals of robots techniques[M]. Wuhan:Huazhong University of Science and Technology Press, 1996:91-113.
[15] 哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社,2009:113-125. Department of Theoretical Mechanics, Harbin Institute of Technology. Theoretical mechanics[M]. Beijing:Higher Education Press, 2009:113-125.
[16] TROYANOVSKAYA I P, POZIN B M. Forces of friction at the wheel-to-ground contact in a turning vehicle[J]. Procedia Engineering, 2015, 129(8):156-160.
[17] RAZAK A A A, ABDULLAH A H, KAMARUDIN K, et al. Mobile robot structure design, modeling and simulation for confined space application[C]//20162nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Sep. 25-27, 2016.

[1] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[2] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[3] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[4] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[5] 王慰军, 杨桂林, 张驰, 陈庆盈. 全向移动机器人驱动万向轮的设计与实现[J]. 工程设计学报, 2016, 23(6): 633-638.
[6] 束智伟,陈新元,邓江洪,詹小辉. 连铸结晶器加渣机布料区域矩形化补偿机构设计[J]. 工程设计学报, 2015, 22(5): 420-424.
[7] 刘方圆,吕传毅,贺 磊. 模块化护理床的下肢机构设计与运动分析[J]. 工程设计学报, 2014, 21(6): 583-588.
[8] 莫易敏,高 勇,巫绍宁,周 浩,邱穆红. 渐开线直齿轮啮合功率损失研究[J]. 工程设计学报, 2014, 21(2): 198-204.
[9] 谢俊, 刘月, 肖朝蓬, 杨启志, 邓辉. 三自由度并联物料振动分拣平台机构设计及运动仿真[J]. 工程设计学报, 2013, 20(6): 501-506.
[10] 邱可, 赵永杰, 路松. 三转动数控台跃度逆解分析[J]. 工程设计学报, 2013, 20(2): 131-134.
[11] 许 翔, 杨定富, 索文超, 刘 刚. 基于时变载荷的齿轮摩擦功率损失计算研究[J]. 工程设计学报, 2010, 17(3): 224-228.
[12] 鲍和云, 朱如鹏. 基于Matlab的两级星型齿轮传动的优化设计[J]. 工程设计学报, 2005, 12(4): 232-235.
[13] 李小周, 黄华梁. 表面电沉积合金层提高碳钢齿轮的接触疲劳强度研究[J]. 工程设计学报, 2002, 9(4): 211-214.