Please wait a minute...
工程设计学报  2016, Vol. 23 Issue (6): 633-638    DOI: 10.3785/j.issn.1006-754X.2016.06.017
通用零部件设计     
全向移动机器人驱动万向轮的设计与实现
王慰军, 杨桂林, 张驰, 陈庆盈
中国科学院 宁波材料技术与工程研究所, 浙江省机器人与智能制造装备技术重点实验室, 浙江 宁波 315201
Design and realization of powered caster wheel for omnidirectional mobile robot
WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying
Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology of Zhejiang Province, Ningbo Institute of Material and Engineering Technology, Chinese Academy of Science, Ningbo 315201, China
 全文: PDF(660 KB)   HTML
摘要:

全向移动机器人使用无解耦机构的驱动万向轮在转向时会派生出额外的滚轮滚动输出,这会导致运动的不稳定以及增加控制算法复杂性.为了解决驱动万向轮转向运动与驱动运动之间的耦合问题,通过在驱动万向轮内加入差速行星齿轮机构,合理地设置该行星齿轮组的输出传动比,可以将转向时的派生滚动输出从转向运动中解耦,实现了对机器人运动的精确控制,提高了机器人运动平稳性.最后通过对机器人进行运动学分析,得到了输入转速与机器人运动速度之间的关系,验证了机器人的全向移动功能,并为机器人运动控制提供了依据.

关键词: 全向移动机器人差速行星齿轮运动学分析解耦驱动万向轮    
Abstract:

The powered caster wheel without special decoupled mechanism that is used by the omnidirectional mobile robot can produce an extra rolling motion output of the wheel when it is making the wheel turn. It is due to the motion couple between the steering motion and driving motion. This phenomenon can lead to the motion instability and increase the complexity of the robot's motion control algorithm, which is not beneficial to the mobile robot's practical application and maneuverability. In order to solve the powered caster wheel's motion couple problem between the steering motion and driving motion, a differential planet gear was mounted between the steering transmission system and driving transmission system. By setting reasonable output transmission ratio and right motion orientation of the differential planet gear, the extra rolling motion could be decoupled from the steering motion, which could make a great contribution to the stability of the robot's motion and accurate motion control. Finally, the kinematics of the robot had been analyzed, from which the relationship of the input motor speed and the robot's velocity could be obtained. Through utilizing, the result of kinematics analyzing the robot's ability of the omnidirectional mobility can be testified and the foundation of the robot's motion control can be provided.

Key words: omnidirectional mobile robot    differential planet gear    kinematics analysis    decouple    powered caster wheel
收稿日期: 2016-01-07 出版日期: 2016-12-28
CLC:  TP242.6  
基金资助:

NSFC-浙江两化融合联合基金资助项目(U1509202).

作者简介: 王慰军(1981-),男,浙江宁波人,工程师,硕士,从事机器人技术及自动化装备研究,E-mail:1473315071@qq.com.http://orcid.org//0000-0001-9524-5649
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王慰军
杨桂林
张驰
陈庆盈

引用本文:

王慰军, 杨桂林, 张驰, 陈庆盈. 全向移动机器人驱动万向轮的设计与实现[J]. 工程设计学报, 2016, 23(6): 633-638.

WANG Wei-jun, YANG Gui-lin, ZHANG Chi, CHEN Qing-ying. Design and realization of powered caster wheel for omnidirectional mobile robot. Chinese Journal of Engineering Design, 2016, 23(6): 633-638.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2016.06.017        https://www.zjujournals.com/gcsjxb/CN/Y2016/V23/I6/633

[1] BISCHOFF Rainer. Field and service robotics[M]. London:Springer, 1998:485-492.
[2] HOLMBERG R. Design and development for powered-caster holonomic mobile robot[D]. Palo Alto:Stanford University, Department of Mechanical Engineering, 2000:8-17.
[3] SAHA S K, ANGELES J, DARCOVICH J. The design of kinematically isotropic rolling robots with omnidirectional wheels[J]. Mechanism and Machine Theory, 1995, 30(8):1127-1137.
[4] GOSSELIN C, ANGELES J. Singularity analysis of closed-loop kinematic chains[J]. IEEE Transactions on Robotics and Automations, 1990, 6(3):281-290.
[5] LI Yuan-ping. Slip modelling estimation and control of omnidirectional wheel mobile robots with powered caster wheel[D]. Singapore:National University of Singapore, Department of Mechanical Engineering, 2009:5-15.
[6] CAMPION G, BASTIN G, D' ANDREA-NOVEL B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Transactions on Robotics and Automations, 1996, 12(1):47-62.
[7] 曹其新,张蕾. 轮式自主移动机器人[M].上海:上海交通大学出版社,2012:40-48. CAO Qi-xin, ZHANG Lei, Wheeled autonomous mobile robot[M]. Shanghai:Shanghai Jiaotong University press, 2012:40-48.
[8] 王曙光. 移动机器人原理与设计[M]. 北京:人民邮电出版社,2013:32-38. WANG Shu-guang. Principle and design of mobile robot[M]. Beijing:People's Posts and Telecommunications Press, 2013:32-38.
[9] PIN F G, KILLOUGH S M. A new family of omnidirectional and holonomic wheeled platforms for mobile robots[J]. IEEE Transactions on Robotics and Automation, 1994, 10(4):480-489.
[10] YI B J, KIM W K.The kinematics for redundantly actuated omnidirectional mobile robots[J]. Journal of Robotic Systems, 2002, 19(6):255-267.
[11] MUIR P F, NEWMAN C P. Kinematic modeling of wheeled mobile robots[J]. Journal of Robotic Systems, 1987, 4(2):281-340.
[12] AGULLO J, CARDONA S, VIVANCOS J. Kinematics of vehicles with directional sliding wheels[J]. Mechanism and Machine Theory, 1987, 22(4):295-301.
[13] SONG J B, BYUN K S. Design and control of a four-wheeled omnidirectional mobile robot with steerable omnidirectional wheels[J]. Journal of Robotic Systems, 2004, 21(4):193-208.
[14] ALEXANDER J C, MADDOCKS J H. On the kinematics of wheeled mobile robots[J]. International Journal of Robotics Research, 1989, 8(5):15-27.
[15] ZHAO Y, BEMENT S L. Kinematics, dynamics and control of wheeled mobile robots[J]. IEEE International Conference on Robotics & Automation, 1992, 1(1):91-96.
[16] WADA M, TAKAGI A, MORI S. A mobile platform with a dual-wheel caster-drive mechanism for holonomic and omnidirectional mobile robots[J]. Journal of the Robotics Society of Japan, 2000, 18(8):1166-1172.
[17] WADA M, TAKAGI A, MORI S. Caster drive mechanisms for holonomic and omnidirectional mobile platforms with no over constraint[J]. IEEE International Conference on Robotics & Automation, 2000, 2(2):1531-1538.
[18] WADA M. A synchro-caster drive system for holonomic and omnidirectional mobile robots[C]. 26th Annual Conference of the IEEE Industrial Electronics Society, Nagoya, Aichi, Oct. 22-28, 2000.

[1] 庄培灿,李麒阳,郗欣甫,孙以泽. 径向环形编织机机电一体化系统建模及控制策略研究[J]. 工程设计学报, 2022, 29(3): 347-357.
[2] 张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.
[3] 陈致, 张春燕, 蒋新星, 朱锦翊, 卢晨晖. 一种可重构的空间开/闭链6R移动并联机构的设计与分析[J]. 工程设计学报, 2021, 28(4): 511-520.
[4] 傅旻, 李晨曦, 郑兆启. 半自动拧取式菠萝采摘收集机的设计与分析[J]. 工程设计学报, 2020, 27(4): 487-497.
[5] 李静, 朱凌云, 苟向锋. 基于人机闭链的下肢康复外骨骼机构运动学分析[J]. 工程设计学报, 2019, 26(1): 65-72,109.
[6] 贾慧波, 李程宇, 吴晓君, 刘小青, 李彦磊. 全向自动导引车导向机构设计及其运动控制研究[J]. 工程设计学报, 2018, 25(5): 546-552.
[7] 阴贺生, 张秋菊, 宁萌. 全向移动机器人驱动轮同步转向机构设计[J]. 工程设计学报, 2018, 25(2): 230-236.
[8] 束智伟,陈新元,邓江洪,詹小辉. 连铸结晶器加渣机布料区域矩形化补偿机构设计[J]. 工程设计学报, 2015, 22(5): 420-424.
[9] 刘方圆,吕传毅,贺 磊. 模块化护理床的下肢机构设计与运动分析[J]. 工程设计学报, 2014, 21(6): 583-588.
[10] 谢俊, 刘月, 肖朝蓬, 杨启志, 邓辉. 三自由度并联物料振动分拣平台机构设计及运动仿真[J]. 工程设计学报, 2013, 20(6): 501-506.
[11] 魏忠斌, 何育民, 段志善, 高攀, 申鹏. 基于Hermite插值的解耦小波基的构造及应用[J]. 工程设计学报, 2013, 20(3): 208-211.
[12] 邱可, 赵永杰, 路松. 三转动数控台跃度逆解分析[J]. 工程设计学报, 2013, 20(2): 131-134.
[13] 李春生, 王 武, 杜玉梅, 金能强, 严陆光. 直线型Halbach磁体和导体板构成的电动式悬浮系统的实验装置设计[J]. 工程设计学报, 2008, 15(1): 33-36.
[14] 田启华, 杨红梅. 基于公理设计的产品设计解耦方法[J]. 工程设计学报, 2007, 14(6): 435-439.