Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 347-357    DOI: 10.3785/j.issn.1006-754X.2022.00.038
建模、仿真、分析与决策     
径向环形编织机机电一体化系统建模及控制策略研究
庄培灿(),李麒阳,郗欣甫,孙以泽()
东华大学 机械工程学院,上海 201620
Research on modeling and control strategy of mechatronics system for radial ring braiding machine
Pei-can ZHUANG(),Qi-yang LI,Xin-fu CHI,Yi-ze SUN()
College of Mechanical Engineering, Donghua University, Shanghai 201620, China
 全文: PDF(9047 KB)   HTML
摘要:

针对径向环形编织机电气特性与机械特性的差异导致的编织机电机易超载甚至被烧毁的问题,建立了编织机机电一体化系统模型。该模型包括编织环模型和牵引滑台模型,其中编织环模型由88个齿轮的闭合传动与4个永磁同步电机的同步驱动耦合而成,牵引滑台模型由永磁同步电机的驱动与滚珠丝杠的运动耦合而成。为了解决编织环上4个电机因齿侧间隙等的存在造成的负载不均,提出了转矩均衡控制方法,即:主电机受速度环和电流环双环闭合控制,从电机只受电流环控制;主电机速度环的输出量作为从电机电流环的给定量。为了较快地使编织环电机组的转速与滑台电机的转速满足协同关系,提出了跟踪性能与同步性能解耦控制方法即交叉耦合解耦控制方法,将跟踪误差补偿量按一定比例关系缩小至幅值以下,以凸显协调误差补偿的效果。进行了现场实验,结果表明,采取所提出的控制策略能够使编织环4个电机的输出转矩相差较小,而且在电机启动与加减速阶段可以使编织环主电机与滑台电机的转速达到协同要求的时间大幅缩短。根据控制策略设计了编织机伺服控制系统。研究结果对织物编织质量的提高起到了重要的指导作用。

关键词: 径向环形编织机机电一体化转矩均衡控制解耦控制    
Abstract:

In order to solve the problem that the electric motor of the radial ring braiding machine was easy to overload or even burn out due to the difference between the electrical characteristics and mechanical characteristics of radial ring braiding machine, the mechatronics system model of the braiding machine was established. The model included a braided ring model and a traction sliding table model. The braided ring model was coupled by the closed transmission of 88 gears and the synchronous drive of 4 permanent magnet synchronous motors, while the traction sliding table model was coupled by drive of permanent magnet synchronous motor and motion of ball screw. In order to solve the uneven load of 4 motors on the braided ring caused by the tooth side clearance, a torque balance control method was proposed, that was, the main motor was controlled by the speed loop and the current loop, and the slave motor was only controlled by current loop; the output of the speed loop of the main motor was taken as the given quantity of the current loop of the slave motor. In order to quickly make the speed of braided ring motor and the speed of sliding table motor meet the cooperative relationship, a decoupling control method for tracking performance and synchronous performance, i.e. cross coupling decoupling control method, was proposed. The tracking error compensation was reduced to less than the amplitude according to a certain proportion, so as to highlight the effect of coordinated error compensation. The field experiment results showed that, the proposed control strategy could make the output torque difference of the 4 motors of the braided ring smaller, and could greatly shorten the time for the speed of the braided ring main motor and the sliding table motor to meet the cooperative requirements in the motor start-up and acceleration and deceleration stages. According to control strategy, the servo control system of the braiding machine was designed. The research results play an important role in improving the weaving quality of fabrics.

Key words: radial ring braiding machine    mechatronics    torque balance control    decoupling control
收稿日期: 2021-07-23 出版日期: 2022-07-05
CLC:  TM351  
基金资助: 国家重点研发计划资助项目(2018YFB1308800)
通讯作者: 孙以泽     E-mail: 18437951376@163.com;sunyz@dhu.cn
作者简介: 庄培灿(1995—),男,福建泉州人,硕士生,从事机电一体化控制与智能控制算法研究,E-mail:18437951376@163.comhttps://orcid.org/0000-0002-6124-4928
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
庄培灿
李麒阳
郗欣甫
孙以泽

引用本文:

庄培灿,李麒阳,郗欣甫,孙以泽. 径向环形编织机机电一体化系统建模及控制策略研究[J]. 工程设计学报, 2022, 29(3): 347-357.

Pei-can ZHUANG,Qi-yang LI,Xin-fu CHI,Yi-ze SUN. Research on modeling and control strategy of mechatronics system for radial ring braiding machine[J]. Chinese Journal of Engineering Design, 2022, 29(3): 347-357.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.038        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/347

图1  编织环上齿轮与电机的位置关系
Uisa,sb,scUα,Uβ
U00,0,00,0
U11,0,023Udc,0
U21,1,013Udc,33Udc
U30,1,0-13Udc,33Udc
U40,1,1-23Udc,0
U50,0,1-13Udc,-33Udc
U61,0,113Udc,-33Udc
U71,1,10,0
表1  基本电压矢量与开关序列的对应关系
图2  编织环机电一体化与转矩均衡控制系统框图
图3  编织环主电机与滑台电机传统交叉耦合控制系统框图
图4  编织环主电机与滑台电机交叉耦合解耦控制系统框图
图5  电机启动阶段在传统交叉耦合控制与交叉耦合解耦控制下电流输出量的对比
图6  径向环形编织机
图7  径向环形编织机的伺服控制系统
图8  编织机电机的转速
图9  编织机电机的转矩
图10  编织环主电机及滑台电机的转速
图11  编织环主电机及滑台电机的实际转速比
1 CHOU T W, KO F K. Textile structural composites[M]. Amsterdam: Elsevier Science Publishers, 1989: 50-70.
2 MOURITZA A P, BANNISTE M K, FALZONB P J, et al. Review of applications for advanced three dimensional fibre textile composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(12): 1445-1461. doi:10.1016/s1359-835x(99)00034-2
doi: 10.1016/s1359-835x(99)00034-2
3 郑锡涛,屈天骄.三维编织复合材料制造技术及力学性能研究进展[J]. 航空制造技术,2011(20):38-44. doi:10.3969/j.issn.1671-833X.2011.20.004
ZHENG Xi-tao, QU Tian-jiao. Progress of investigation on manufacturing technology and mechanical properties of 3D braided composites[J]. Aeronautical Manufacturing Technology, 2011(20): 38-44.
doi: 10.3969/j.issn.1671-833X.2011.20.004
4 ZHANG M Q, ZOU T, HUANG Y C, et al. Braided thin-walled biodegradable ureteral stent: Preliminary evaluation in a canine model[J]. International Journal of Urology, 2014, 21(4): 401-407. doi:10.1111/iju.12297
doi: 10.1111/iju.12297
5 刘宜胜,徐海亮,吴震宇,等.三维编织机运动仿真分析及其轨道优化设计[J].纺织学报,2017,38(4):134-139. doi:10.13475/j.fzxb.20160404606
LIU Yi-sheng, XU Hai-liang, WU Zhen-yu, et al. Motion simulation analysis and track optimal design for three-dimensional braiding machine[J]. Journal of Textile Research, 2017, 38(4): 134-139.
doi: 10.13475/j.fzxb.20160404606
6 李志勇.硬轴联结多电机功率平衡控制方法[J].电机与控制学报,2009,13(3):398-401,407. doi:10.3969/j.issn.1007-449X.2009.03.016
LI Zhi-yong. Power balance control in fixed joint multi motor system[J]. Electric Machines and Control, 2009, 13(3): 398-401, 407.
doi: 10.3969/j.issn.1007-449X.2009.03.016
7 谢万宇,孟婥,卜剑秋,等.基于EtherCAT 多轴伺服系统的编织机控制系统[J].东华大学学报(自然科学版),2019,45(3):418-424.
XIE Wan-yu, MENG Chuo, BU Jian-qiu, et al. Braiding machine control system based on EtherCAT multi-axis servo system[J]. Journal of Donghua University (Natural Science Edition), 2019, 45(3): 418-424.
8 KESSELS J F A, AKKERMAN R. Prediction of the yarn trajectories on complex braided preforms[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1073-1081. doi:10.1016/s1359-835x(02)00075-1
doi: 10.1016/s1359-835x(02)00075-1
9 YAO L L, MENG Z, BU J Q, et al. Non-linear dynamic feature analysis of a multiple-stage closed-loop gear transmission system for 3D circular braiding machine[J]. Symmetry, 2020, 12(11): 1788. doi:10.3390/sym12111788
doi: 10.3390/sym12111788
10 ZHANG Y J, MENG Z, SUN Y Z. Dynamic modeling and chaotic analysis of gear transmission system in a braiding machine with or without random perturbation[J]. Shock and Vibration, 2016: 1-12. doi:10.1155/2016/8457645
doi: 10.1155/2016/8457645
11 YAO L L, MENG Z, BU J Q, et al. Investigation of nonlinear characteristics of a gear transmission system in a braiding machine with multiple excitation factors[J]. Shock and Vibration, 2020: 1-20. doi:10.1155/2020/2747204
doi: 10.1155/2020/2747204
12 ZHANG Y C, ZHU J G. A simple method to reduce torque ripple in direct torque-controlled permanent magnet synchronous motor by using vectors with variable amplitude and angle[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2848-2859. doi:10.1109/tie.2010.2076413
doi: 10.1109/tie.2010.2076413
13 吴婷,王辉,罗德荣,等.一种新型内置式永磁同步电机初始位置检测方法[J].电工技术学报,2018,33(15): 3578-3585.
WU Ting, WANG Hui, LUO De-rong, et al. A new initial position estimation method for interior permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3578-3585.
14 吴公平,黄守道,饶志蒙,等.新型N × 3相永磁同步电机的特性分析及其预测控制[J].中国电机工程学报,2019,39(4):1171-1181. doi:10.13334/j.0258-8013.pcsee.180820
WU Gong-ping, HUANG Shou-dao, RAO Zhi-meng, et al. Characteristic analysis and predictive control of a novel N × 3 phase permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2019, 39(4): 1171-1181.
doi: 10.13334/j.0258-8013.pcsee.180820
15 刘佳敏,葛召炎,吴轩,等.基于占空比调制的永磁同步电机预测电流控制[J].中国电机工程学报,2020,40(10):3319-3327. doi:10.13334/j.0258-8013.pcsee.190897
LIU Jia-min, GE Shao-yan, WU Xuan, et al. Predictive current control of permanent magnet synchronous motor based on duty-cycle modulation[J]. Proceedings of the CSEE, 2020, 40(10): 3319-3327.
doi: 10.13334/j.0258-8013.pcsee.190897
16 CHEN H C, CHEN K Y, CHEN W Y. High efficiency current control methods based on multidimensional feedback quantization and its application to three-phase PMSM[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 5820-5829. doi:10.1109/tie.2014.2316230
doi: 10.1109/tie.2014.2316230
17 SIAMI M, KHABURI D A, ABBASZADEH A, et al. Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3458-3466. doi:10.1109/tie. 2016.2521734
doi: 10.1109/tie. 2016.2521734
18 RODRIGUEZ J, KENNEL R M, ESPINOZA J R, et al. High-performance control strategies for electrical drives: An experimental assessment[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 812-820. doi:10. 1109/tie.2011.2158778
doi: 10. 1109/tie.2011.2158778
19 秦艳忠,阎彦,陈炜,等.永磁同步电机参数误差补偿-三矢量模型预测电流控制[J]. 电工技术学报,2020,35(2):255-265.
QIN Yan-zhong, YAN Yan, CHEN Wei, et al. Three-vector model predictive current control strategy for permanent magnet synchronous motor drives with parameter error compensation [J]. Transactions of China Electrotechnical Society, 2020, 35(2): 255-265.
20 张永昌,杨海涛,魏香龙.基于快速矢量选择的永磁同步电机模型预测控制[J].电工技术学报,2016,31(6):66-73. doi:10.3969/j.issn.1000-6753.2016.06.008
ZHANG Yong-chang, YANG Hai-tao, WEI Xiang-long. Model predictive control of permanent magnet synchronous motors based on fast vector selection[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 66-73.
doi: 10.3969/j.issn.1000-6753.2016.06.008
[1] 贾慧波, 李程宇, 吴晓君, 刘小青, 李彦磊. 全向自动导引车导向机构设计及其运动控制研究[J]. 工程设计学报, 2018, 25(5): 546-552.
[2] 虞黎明, 索双富, 季林红, 任革学. FAST一次支撑系统的结构研究[J]. 工程设计学报, 2001, 8(4): 173-175.