Please wait a minute...
工程设计学报  2022, Vol. 29 Issue (3): 339-346    DOI: 10.3785/j.issn.1006-754X.2022.00.036
建模、仿真、分析与决策     
基于CSO-SVM的数控机床主轴热误差建模
刘洪江1(),胡腾1,2(),何勇3,董峰4,罗为5
1.西南石油大学 机电工程学院,四川 成都 610500
2.四川普什宁江机床有限公司,四川 都江堰 611830
3.中国石油集团川庆钻探工程有限公司 培训中心,四川 成都 610213
4.成都广通汽车有限公司,四川 成都 611430
5.中国质量认证中心,四川 成都 610065
Spindle thermal error modeling of NC machine tool based onCSO-SVM
Hong-jiang LIU1(),Teng HU1,2(),Yong HE3,Feng DONG4,Wei LUO5
1.School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, China
2.Sichuan Push Ningjiang Machine Tool Co. , Ltd. , Dujiangyan 611830, China
3.Training Center, China National Petroleum Corporation Chuanqing Drilling Engineering Co. , Ltd. , Chengdu 610213, China
4.Chengdu Guangtong Automobile Co. , Ltd, Chengdu 611430, China
5.China Quality Certification Center, Chengdu 610065, China
 全文: PDF(3609 KB)   HTML
摘要:

针对数控机床多热源所致的温升与主轴热误差之间复杂的非线性关系问题,提出一种鸡群优化(chicken swarm optimization, CSO)算法与支持向量机(support vector machines, SVM)相结合的主轴热误差预测模型(以下简称热误差模型)。以某精密数控机床的主轴单元为研究对象,采用五点法对其在空转状态下的轴向热变形进行测量,并借助热电偶传感器对机床的4个关键温度测点的温度进行采集。以SVM为理论基础,随机选取75%的数据样本进行训练,进而构建主轴热误差模型。其中,利用CSO算法优化SVM模型的惩罚参数c和核参数g,以提升热误差模型的预测能力及鲁棒性。以余下的25%的样本作为测试数据集,对所得热误差模型进行验证。利用CSO-SVM模型对不同工况下主轴的热误差进行预测,并将预测结果与测量结果进行对比。结果表明:当主轴转速为3 000 r/min时,CSO-SVM模型的平均预测精度高达97.32%,相较于多元线性回归模型和基于粒子群优化的SVM模型分别提升了6.53%和4.68%;当主轴转速为2 000, 4 000 r/min时,CSO-SVM模型的平均预测精度分别为92.53%、91.82%,表明该模型具有较高的预测能力和良好的鲁棒性。CSO-SVM模型具有较强的实用性和工程应用价值。

关键词: 数控机床主轴热误差鸡群优化支持向量机    
Abstract:

Aiming at the complex nonlinear relationship between temperature rise and spindle thermal error caused by multiple heat sources of numerical control (NC) machine tool, a spindle thermal error prediction model (hereinafter referred to as thermal error model) based on chicken swarm optimization (CSO) algorithm and support vector machine (SVM) was proposed. Taking the spindle unit of a precision NC machine tool as the research object, the axial thermal deformation under idle state was measured by five-point measurement method, and the temperatures of four key temperature measuring points of the machine tool were collected using thermocouple sensor. Based on SVM theory, 75% data samples were randomly selected for training, and then the spindle thermal error model was constructed. Among them, CSO algorithm was used to optimize the penalty parameter c and kernel parameter g of SVM model to improve the prediction ability and robustness of the thermal error model. The remaining 25% of the samples were used as the test data set to verify the thermal error model.The spindle thermal error under different working conditions was predicted using CSO-SVM model, and the predicted results were compared with the measured results.The results showed that when the spindle rotate speed was 3 000 r/min, the average prediction accuracy of CSO-SVM model was as high as 97.32%, which was 6.53% and 4.68% higher than that of multiple linear regression model and SVM model based on particle swarm optimization, respectively; when the spindle rotate speed was 2 000 and 4 000 r/min, the average prediction accuracy of CSO-SVM model was 92.53% and 91.82% respectively, indicating that the model had high prediction ability and good robustness. CSO-SVM model has strong practicability and engineering application value.

Key words: CNC machine tool    spindle    thermal error    chicken swarm optimization    support vector machine
收稿日期: 2021-05-03 出版日期: 2022-07-05
CLC:  TH 161  
基金资助: 国家科技重大专项资金资助项目(2018ZX04032001)
通讯作者: 胡腾     E-mail: lhj055417@163.com;tenghu@swpu.edu.cn
作者简介: 刘洪江(1995—),男,四川巴中人,硕士生,从事数控机床热误差建模及补偿研究,E-mail:lhj055417@163.comhttps://orcid.org/0000-0002-5757-860X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘洪江
胡腾
何勇
董峰
罗为

引用本文:

刘洪江,胡腾,何勇,董峰,罗为. 基于CSO-SVM的数控机床主轴热误差建模[J]. 工程设计学报, 2022, 29(3): 339-346.

Hong-jiang LIU,Teng HU,Yong HE,Feng DONG,Wei LUO. Spindle thermal error modeling of NC machine tool based onCSO-SVM[J]. Chinese Journal of Engineering Design, 2022, 29(3): 339-346.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.036        https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/339

图1  五点法测量示意
图2  五点法测量原理示意
序号T1T2T3T4
位置前轴承主轴箱立柱床身
表1  机床的关键温度测点
图3  机床关键温度测点的分布
图4  机床温度和主轴热误差的测量平台
图5  转速为3 000 r/min时机床各关键测点的温度变化曲线
图6  不同转速下主轴热误差变化曲线
图7  CSO算法流程
图8  转速为3 000 r/min时CSO-SVM模型的热误差预测结果
图9  不同模型预测精度的对比
图10  不同工况下CSO-SVM模型的热误差预测结果
图11  转速为3 000 r/min时CSO-SVM模型的主轴径向热漂移误差预测结果
1 RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools: A review. part II: thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284. doi:10.1016/s0890-6955(00)00010-9
doi: 10.1016/s0890-6955(00)00010-9
2 WENG L, GAO W, LV Z, et al. Influence of external heat sources on volumetric thermal errors of precision machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 475–495. doi:10.1007/s00170-018-2462-3
doi: 10.1007/s00170-018-2462-3
3 LI Y, ZHAO W, LAN S, et al. A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools and Manufacture, 2015, 95: 20-38. doi:10.1016/j.ijmachtools.2015.04.008
doi: 10.1016/j.ijmachtools.2015.04.008
4 邓小雷,林欢,王建臣,等.机床主轴热设计研究综述[J].光学精密工程,2018,26(6):1415-1429. doi:10.3788/OPE.20182606.1415
DENG Xiao-lei, LIN Huan, WANG Jian-chen, et al. Review on thermal design of machine tool spindles[J]. Optics and Precision Engineering, 2018, 26(6): 1415-1429.
doi: 10.3788/OPE.20182606.1415
5 要小鹏,殷国富,李光明.基于OE-CM算法的机床主轴热误差建模与补偿分析[J].中国机械工程,2015,26(20):2757-2762. doi:10.3969/j.issn.1004-132X.2015.20.011
YAO Xiao-peng, YIN Guo-fu, LI Guang-ming. Thermal error modeling and compensation analysis based on OE-CM algorithm for machine tool spindles[J]. China Mechanical Engineering, 2015, 26(20): 2757-2762.
doi: 10.3969/j.issn.1004-132X.2015.20.011
6 颜宗卓,陶涛,侯瑞生,等.机床电主轴热特性卷积建模研究[J].西安交通大学学报,2019,53(6):1-8. doi:10.7652/xjtuxb201906001
YAN Zong-zhuo, TAO Tao, HOU Rui-sheng, et al. Convolution modeling for thermal properties of motorized spindle in machine tools[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 1-8
doi: 10.7652/xjtuxb201906001
7 姚晓栋,黄奕乔,马晓波,等.基于时间序列算法的数控机床热误差建模及其实时补偿[J].上海交通大学学报,2016,50(5):673-679. doi:10.16183/j.cnki.jsjtu.2016.05.005
YAO Xiao-dong, HUANG Yi-qiao, MA Xiao-bo, et al. Thermal error modeling and real-time compensation of CNC machine tools based on time series method[J]. Journal of Shanghai Jiaotong University, 2016, 50(5): 673-679.
doi: 10.16183/j.cnki.jsjtu.2016.05.005
8 LI T, LI F, JIANG Y, et al. Thermal error modeling and compensation of a heavy gantry-type machine tool and its verification in machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92: 3073-3092. doi:10.1007/s00170-017-0353-7
doi: 10.1007/s00170-017-0353-7
9 高卫国,王伟松,张大卫,等.考虑结构热变形的机床进给系统热误差研究[J].工程设计学报,2019,26(1):29-38. doi:10.3785/j.issn.1006-754X.2019.01.006
GAO Wei-guo, WANG Wei-song, ZHANG Da-wei, et al. Research on thermal error of machine tool feed system considering structural thermal deformation[J]. Chinese Journal of Engineering Design, 2019, 26(1): 29-38.
doi: 10.3785/j.issn.1006-754X.2019.01.006
10 LIU Y, MIAO E, LIU H, et al. Robust machine tool thermal error compensation modelling based on temperature-sensitive interval segmentation modelling technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 655-669. doi:10.1007/s00170-019-04482-8
doi: 10.1007/s00170-019-04482-8
11 YAO X, HU T, YIN G, et al. Thermal error modeling and prediction analysis based on OM algorithm for machine tool’s spindle[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106: 3345-3356. doi:10.1007/s00170-019-04767-y
doi: 10.1007/s00170-019-04767-y
12 王维,杨建国,姚晓栋,等.数控机床几何误差与热误差综合建模及其实时补偿[J].机械工程学报,2012,48(7):165-170,179. doi:10.3901/JME.2012.07.165
WANG Wei, YANG Jian-guo, YAO Xiao-dong, et al, Synthesis modeling and real-time compensation of geometric error and thermal error for CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7): 165-170, 179.
doi: 10.3901/JME.2012.07.165
13 谭峰,殷鸣,彭骥,等.基于集成BP神经网络的数控机床主轴热误差建模[J].计算机集成制造系统,2018,24(6):1383-1390. doi:10.13196/j.cims.2018.06.007
TAN Feng, YIN Ming, PENG Ji, et al. CNC machine tool spindle thermal error modeling based on ensemble BP neural network[J]. Computer Integrated Manufacturing System, 2018, 24 (6): 1383-1390.
doi: 10.13196/j.cims.2018.06.007
14 LI G, KE H, LI C, et al. Thermal error modeling of feed axis in machine tools using particle swarm optimization-based generalized regression neural network[J]. Journal of Computing and Information Science in Engineering, 2020, 20(2): 1-13. doi:10.1115/1.4045292
doi: 10.1115/1.4045292
15 CHENG Q, QI Z, ZHANG G, et al. Robust modelling and prediction of thermally induced positional error based on grey rough set theory and neural networks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83: 753-764. doi:10.1007/s00170-015-7556-6
doi: 10.1007/s00170-015-7556-6
16 朱星星,赵亮,雷默涵,等.精密进给系统热误差的协同训练支持向量机回归建模与补偿方法[J].西安交通大学学报,2019,53(10):40-47. doi:10.7652/xjtuxb201910006
ZHU Xing-xing, ZHAO Liang, LEI Mo-han, et al. Co-training support vector machine regression modeling and compensation for thermal error of precision feed system[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 40-47.
doi: 10.7652/xjtuxb201910006
17 LI Q, LI H. A general method for thermal error measurement and modeling in CNC machine tools’ spindle[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 2739-2749. doi:10.1007/s00170-019-03665-7
doi: 10.1007/s00170-019-03665-7
18 LIU H, MIAO E, ZHUANG X, et al. Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm[J]. Precision Engineering, 2018, 51: 169-175. doi:10.1016/j.precisioneng.2017.08.007
doi: 10.1016/j.precisioneng.2017.08.007
19 黄智,贾臻杰,邓涛,等.基于支持向量机的静压转台热误差补偿[J].浙江大学学报(工学版),2019,53(8):1594-1601.
HUANG Zhi, JIA Zhen-jie, DENG Tao, et al. Thermal error compensation of static pressure turntable based on support vector machine[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(8): 1594-1601.
20 李宾,申国君,孙庚,等.改进的鸡群优化算法[J].吉林大学学报(工学版),2019,49(4):1339-1344.
LI Bin, SHEN Guo-jun, SUN Geng, et al. Improved chicken swarm optimization algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(4): 1339-1344.
[1] 纪超,王亮,王孝敬,李小兵,曹雯. 基于MSSA-SVM的电缆隧道故障预警系统设计[J]. 工程设计学报, 2023, 30(1): 109-116.
[2] 李毅,陈国华,夏铭,李波. 电主轴冷却系统设计与仿真优化[J]. 工程设计学报, 2023, 30(1): 39-47.
[3] 肖圳, 何彦, 李育锋, 吴鹏程, 刘德高, 杜江. 改进MDSMOTEPSO-SVM在汽车组合仪表分类预测中的应用[J]. 工程设计学报, 2022, 29(1): 20-27.
[4] 刘羽嘉, 潘滨, 李东泽, 李凤迪, 张迁, 孙丰刚, 兰鹏. 民宿无人值守智能管理系统设计与实现[J]. 工程设计学报, 2020, 27(3): 389-397.
[5] 李传珍, 李国龙, 陶小会, 庞源. 基于改进有序聚类法的立式加工中心进给系统温测点优化[J]. 工程设计学报, 2020, 27(2): 223-231.
[6] 姜晓飞, 张冠伟, 胡永秀, 张大卫. 数控机床整机动态特性评价方法[J]. 工程设计学报, 2020, 27(2): 135-145.
[7] 李成兵, 叶超, 毛熙皓. 改进人工蜂群算法优化的LSSVM在混合气体定量分析中的应用[J]. 工程设计学报, 2020, 27(1): 94-102.
[8] 孔德帅, 胡高峰, 张冠伟, 张大卫. 压电驱动器可控预紧力主轴设计及性能分析[J]. 工程设计学报, 2019, 26(6): 743-752.
[9] 卢万杰, 付华, 赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报, 2019, 26(5): 527-533.
[10] 孙顺苗, 何彦, 吴鹏程, 王乐祥, 凌俊杰, 李军. 基于Storm流处理的数控机床运行数据监测方法的设计与实现[J]. 工程设计学报, 2019, 26(3): 245-251.
[11] 高卫国, 王伟松, 张大卫, 刘腾, 李金和, 翁凌韬, 齐向阳. 考虑结构热变形的机床进给系统热误差研究[J]. 工程设计学报, 2019, 26(1): 29-38.
[12] 邓小雷, 庞世杰, 李瑞琦, 周宜博, 王建臣, 傅建中. 基于昆虫翅脉仿生流道的数控机床主轴系统冷却结构热设计[J]. 工程设计学报, 2018, 25(5): 583-589.
[13] 江岳春, 杨旭琼, 陈礼锋, 贺飞. 基于EMD-SC和AGSA优化支持向量机的超短期风电功率组合预测[J]. 工程设计学报, 2017, 24(2): 187-195.
[14] 李占福, 童昕. 基于AFSA-SimpleMKL对振动筛建模及筛机优化[J]. 工程设计学报, 2016, 23(2): 181-187.
[15] 张路路,张瑞军,王晓伟,王囡囡. 模糊支撑半径变量贝叶斯网络多态系统故障概率分析[J]. 工程设计学报, 2014, 21(5): 405-411.