Please wait a minute...
工程设计学报  2019, Vol. 26 Issue (6): 743-752    DOI: 10.3785/j.issn.1006-754X.2019.00.008
通用零部件设计     
压电驱动器可控预紧力主轴设计及性能分析
孔德帅1, 胡高峰1,2, 张冠伟1, 张大卫1
1.天津大学 机构理论与装备设计教育部重点实验室, 天津 300354
2.天津职业技术师范大学 高速切削与精密加工天津市重点实验室, 天津 300222
Design and performance analysis of variable preload spindle based on piezoelectric actuator
KONG De-shuai1, HU Gao-feng1,2, ZHANG Guan-wei1, ZHANG Da-wei1
1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education,Tianjin University,Tianjin 300354,China
2.Tianjin Key laboratory of High Speed Cutting and Precision Machining, Tianjin University of Technology and Education,Tianjin 300222, China
 全文: PDF(3355 KB)   HTML
摘要: 可控预紧力主轴能够满足高速主轴在整个切削转速范围内热、动特性兼优的要求,已逐步成为智能主轴的重要发展方向。为弥补压电驱动器(piezoelectric actuator, PEA)可控预紧力主轴设计及选型方面的不足,提出一种具有分辨率高、响应快、对切削刚度影响小及结构紧凑等优点的PEA可控预紧力主轴结构。建立了静止状态和运行状态下的角接触球轴承刚度模型,并以此为基础建立了PEA可控预紧力主轴的等效力学模型,得到了预紧机构负载刚度随预紧位移的变化规律。然后,分析了PEA的输出特性,建立了预紧机构的实际输入输出模型,并通过该模型分析了初始预紧力和PEA刚度对预紧力控制区间的影响规律,进而提出了预紧机构设计选型原则。最后,应用提出的主轴结构和预紧机构设计选型原则设计了PEA可控预紧力主轴试验台。试验结果表明预紧力控制分辨率为1.5 N,阶跃响应时间为300 ms,验证了所建预紧机构实际输入输出模型的准确性;温度控制试验结果表明该主轴试验台具有良好的温度调控能力。研究结果可为实际工程中PEA可控预紧力主轴的设计提供指导。
关键词: 高速主轴可控预紧力压电驱动器温度控制    
Abstract: Variable preload spindle can meet the requirements of both thermal and dynamic characteristics of high-speed spindle in the whole cutting speed range, and has become an important development direction of the intelligent spindle. In order to make up for the deficiencies in the design and selection of variable preload spindle based on piezoelectric actuator (PEA), a variable preload spindle structure based on PEA with the advantages of high resolution, quick response, little influence on cutting stiffness and compact structure was presented. The stiffness models of angular contact ball bearing under static and running conditions were established. On this basis, the equivalent mechanical model of the variable preload spindle based on PEA was established and the change regulation of preload mechanism load stiffness with preload displacement was obtained. Furthermore, the actual input-output model of the preload mechanism was established by analyzing the output characteristics of PEA, and the influence of initial preload and the stiffness of PEA on the control range for preload was analyzed, and then, the design and selection principles of preload mechanism was proposed. Finally,a variable preload spindle test rig based on PEA was designed by applying the proposed spindle structure and the design and selection principles. Test results showed that the preload control resolution was 1.5 N and the step response time was 300 ms,and the accuracy of the actual input-output model of the preload mechanism was verified. The temperature control test results showed that the spindle test rig had great temperature control ability. The study results can provide guidance for the design of variable preload spindle based on PEA in engineering.
Key words: high-speed spindle    variable preload    piezoelectric actuator    temperature control
收稿日期: 2019-05-22 出版日期: 2019-12-28
CLC:  TG 502  
基金资助: 国家科技重大专项资金资助项目(2015ZX04005001)
通讯作者: 张大卫(1962—),男,山东临沂人,教授,博士,从事高速主轴、精密机床、微纳制造等研究, E-mail:medzhang1101@tju.edu.cn     E-mail: medzhang1101@tju.edu.cn
作者简介: 孔德帅(1995—),男,河北黄骅人,硕士生,从事高速电主轴可控预紧力研究,E-mail:kongdeshuai@tju.edu.cn, https://orcid.org/0000-0003-3192-2334
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孔德帅
胡高峰
张冠伟
张大卫

引用本文:

孔德帅, 胡高峰, 张冠伟, 张大卫. 压电驱动器可控预紧力主轴设计及性能分析[J]. 工程设计学报, 2019, 26(6): 743-752.

KONG De-shuai, HU Gao-feng, ZHANG Guan-wei, ZHANG Da-wei. Design and performance analysis of variable preload spindle based on piezoelectric actuator. Chinese Journal of Engineering Design, 2019, 26(6): 743-752.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2019.00.008        https://www.zjujournals.com/gcsjxb/CN/Y2019/V26/I6/743

[1] 蔡军, 蒋书运. 高速机床主轴轴承预紧力理论分析[J].精密制造与自动化,2008(3):29-32,58. doi:10.3969/j.issn.1009-962X.2008.03.009 CAI Jun, JIANG Shu-yun. Theoretical analysis of preload for high-speed machine spindle bearing[J]. Precise Manufacturing & Automation, 2008(3): 29-32, 58.
[2] 纪宗辉, 吕浪, 李芳芳, 等. 兼顾低速重载和高速轻载电主轴的可控预紧方法研究[J]. 制造技术与机床, 2009(12):132-136. doi:10.3969/j.issn.1005-2402.2009.12.044 JI Zong-hui, Lü Lang, LI Fang-fang, et al. Research on a controllable preload method of high frequency spindles with characteristics of low-speed heavy and high-speed light loads[J]. Manufacturing Technology & Machine Tool, 2009(12): 132-136.
[3] 郭明, 陈宗农, 王庆九. 精密机床主轴轴承的预紧力控制[J].工程设计学报,2001,8(2):85-87. doi:10.3785/j.issn.1006-754X.2001.02.008 GUO Ming, CHEN Zong-nong, WANG Qing-jiu. Control of preload of bearing on precision machine tool[J]. Chinese Journal of Engineering Design, 2001, 8(2): 85-87.
[4] 刘志峰, 孙海明. 电主轴滚动轴承轴向预紧技术综述[J].中国机械工程,2018,29(14):1711-1723,1763. doi:10.3969/j.issn.1004-132X.2018.14.011 LIU Zhi-feng, SUN Hai-ming. Review on rolling bearing axial preloaded technique of motorized spindles[J]. China Mechanical Engineering, 2018, 29(14): 1711-1723, 1763.
[5] HAGIU G D. Reliable high speed spindles by optimum bearings preload[J]. Internal Journal of Applied Mechanics and Engineering, 2003, 8(1): 57-70.
[6] 杨林林. 主轴轴承预紧力自调节结构及性能研究[D]. 秦皇岛:燕山大学机械工程学院,2017:8-27. YANG Lin-lin. Study on the structure and performance of self adjustment of spindle bearing preload[D].Qinhuangdao: Yanshan University, School of Mechanical Engineering, 2017: 8-27.
[7] 杨庆东, 王科社, 孟玲霞, 等. 基于材料热特性的轴承预紧力自调节设计方法[J].机械工程学报,2008,44(9):183-187. doi:10.3321/j.issn:0577-6686.2008.09.030 YANG Qing-dong, WANG Ke-she, MENG Ling-xia, et al. Design method of automatic adjustment of bearing preload based on thermal characteristic of materials[J]. Journal of Mechanical Engineering, 2008, 44(9): 183-187.
[8] KIM D H, LEE C M. A study on the development of a new conceptual automatic variable preload system for a spindle bearing[J]. International Journal of Advanced Manufacture Technology, 2013, 65(5/8): 817-824. doi:10.1007/s00170-012-4219-8
[9] ZVEREV I A, PYOUN Y S, LEE K B, et al. An elastic deformation model of high speed spindle units[J]. Journal of Materials Processing Technology, 2005, 170(3): 570-578. doi:10.1016/j.jmatprotec.2005.05.038
[10] JIANG S Y, MAO H B. Investigation of variable optimum preload for a machine tool spindle[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 19-28. doi:10.1016/j.ijmachtools.2009.10.001
[11] HWANG Y K, LEE C M. Development of a newly structured variable preload control device for a spindle rolling bearing by using an electromagnet[J]. Internal Journal of Machine Tools and Manufacture, 2010, 50(3): 253-259. doi:10.1016/j.ijmachtools.2009.12.002
[12] TSUTSUI S, AOYAMA T, INASAKI I. Development of a spindle system with an adjustable preload mechanism using a piezoelectric actuator[J]. The Japan Society of Mechanical Engineering, 1988, 31(3): 593-597. doi:10.1299/jsmec1988.31.593
[13] 张进华, 高泉流, 洪军, 等. 一种基于液压控制的机床主轴轴承预紧力自动调节系统和方法:CN201611170299.0[P].2017-12-16. ZHANG Jin-hua, GAO Quan-liu, HONG Jun, et al. An automatic adjusting system and method for preload of machine tool spindle bearing based on hydraulic control: CN201611170299.0[P]. 2017-12-16.
[14] 李颂华, 贾垂盈. 基于压电陶瓷主轴单元可控预紧力研究[J].组合机床与自动化加工技术,2015(8):28-31.doi:10.13462/j.cnki.mmtamt.2015.08.007 LI Song-hua, JIA Chui-ying. The research of spindle unit controllable preload based on piezoelectric ceramic[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015(8): 28-31.
[15] CHEN J S, CHEN K W. Bearing load analysis and control of a motorized high speed spindle[J]. International Journal of Machine Tools and Manufacture, 2005, 45(12/13): 1487-1493. doi:10.1016/j.ijmachtools.2005.01.024
[16] 齐向阳, 王鹤宇. 基于压电陶瓷与柔性机构的高速机床主轴预紧控制机构设计[J].邵阳学院学报(自然科学版),2017,14(1):100-107. doi:10.3969/j.issn.1672-7010.2017.01.018 QI Xiang-yang, WANG He-yu. Design of high speed machine tool spindle preload control mechanism based on piezoelectric ceramics and flexible mechanism[J]. Journal of Shaoyang University(Natural Science Edition), 2017, 14(1): 100-107.
[17] HU Gao-feng, ZHANG Da-wei, GAO Wei-guo, et al. Study on variable pressure/position preload spindle-bearing system by using piezoelectric actuators under close-loop control[J]. International Journal of Machine Tools and Manufacture, 2018, 125: 68-88. doi:10.1016/j.ijmachtools.2017.11.004
[18] HARRIS T A. Rolling bearing analysis[M]. New York: John Wiley&Sons, 1991: 150-169.
[1] 王超, 孙文旭, 马晓静, 陈纪旸, 栾义忠, 马思乐. 基于模糊控制的HVPE生长设备温度控制系统[J]. 工程设计学报, 2020, 27(6): 765-770.
[2] 赵爱玲, 张海峰, 侯君. 基于单片机的熏蒸温度微分先行控制器[J]. 工程设计学报, 2010, 17(5): 377-380.