Please wait a minute...
工程设计学报  2017, Vol. 24 Issue (2): 187-195    DOI: 10.3785/j.issn.1006-754X.2017.02.010
建模、分析、优化和决策     
基于EMD-SC和AGSA优化支持向量机的超短期风电功率组合预测
江岳春, 杨旭琼, 陈礼锋, 贺飞
湖南大学 电气与信息工程学院, 湖南 长沙 410082
Super-short-time wind power combination forecasting based on support vector machine optimized by EMD-SC and AGSA
JIANG Yue-chun, YANG Xu-qiong, CHEN Li-feng, HE Fei
College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
 全文: PDF(2132 KB)   HTML
摘要:

风电功率存在较大的随机性、波动性和相关性,这会对风电并网带来极大的挑战。为提高超短期风电功率预测精度,提出一种基于经验模态分解(empirical mode decomposition,EMD)、谱聚类(spectral clustering,SC)和改进型引力搜索算法(ameliorated gravitational search algorithm,AGSA)优化支持向量机(support vector machine,SVM)参数的超短期风电功率组合预测方法。首先通过经验模态分解对风电原始数据进行去噪处理,剔除不规则的数据;然后应用谱聚类对经验模态分解后的子序列进行聚类分析,再应用改进型引力搜索算法优化支持向量机模型对各个子序列进行预测;最后将各子序列的预测结果相加得到最终预测值。以某风电场的实际数据为算例,仿真研究表明,所提出的组合模型能够提高风电功率预测精度,且预测效果较好,同时也证明了所采用方法的合理性。该方法能够用于风电功率的精确预测。

关键词: 超短期风电功率预测经验模态分解谱聚类改进型引力搜索算法支持向量机    
Abstract:

Due to the randomness, volatility and relativity of the wind power, it brings great challenges to wind power integration. To improve the ultra short-term prediction accuracy of the wind power, a kind of method for predicting super-short-term wind power based on empirical mode decomposition (EMD) and spectral clustering (SC) and ameliorated gravitational search algorithm (AGSA) that could optimize the learning parameters of support vector machine (SVM) was put forward. Firstly, the raw data of the wind power was denoised by EMD to eliminate the irregular data; then the cluster analysis of the subsequences from EMD was carried out by SC, and SVM's model was optimized by applying AGSA to predict each subsequence respectively; finally the results of the subsequences were added together to get the ultimate predicted value. Taking one wind farm's actual data as an example, the simulation indicates that the proposed model can improve the accuracy and veracity when predicting wind power. Meanwhile, it also suggests the reasonability of this method. The method can forecast wind power accurately.

Key words: super-short-time wind power forecasting    empirical mode decomposition    spectral clustering    ameliorated gravitational search algorithm    support vector machine
出版日期: 2017-04-28
CLC:  TH11  
基金资助:

国家自然科学基金资助项目(51277057)

作者简介: 江岳春(1965-),男,湖南长沙人,副教授,博士,从事电力系统自动化研究,E-mail:jychncs@sina.com,http://orcid.org//0000-0003-2792-2040
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
江岳春
杨旭琼
陈礼锋
贺飞

引用本文:

江岳春, 杨旭琼, 陈礼锋, 贺飞. 基于EMD-SC和AGSA优化支持向量机的超短期风电功率组合预测[J]. 工程设计学报, 2017, 24(2): 187-195.

JIANG Yue-chun, YANG Xu-qiong, CHEN Li-feng, HE Fei. Super-short-time wind power combination forecasting based on support vector machine optimized by EMD-SC and AGSA[J]. Chinese Journal of Engineering Design, 2017, 24(2): 187-195.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2017.02.010        https://www.zjujournals.com/gcsjxb/CN/Y2017/V24/I2/187

[1] 张宁宇,高山,赵欣.一种考虑风电随机性的机组组合模型及其算法[J].电工技术学报,2013,28(5):22-29. ZHANG Ning-yu, GAO Shan, ZHAO Xin. An unit commitment model and algorithm with randomness of wind power[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 22-29.
[2] MA Xi-yuan, SUN Yuan-zhang, FANG Hua-liang. Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE Transaction on Sustainable Energy, 2013, 4(4): 894-904.
[3] DONG L, WANG L J, SHAHNAWAZ F K, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable and Sustainable Energy Reviews, 2016, 60(6): 1206-1212.
[4] HUANG Z X. Extensions to the K-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3):283-304.
[5] 周林,平西建,徐森,等.基于谱聚类的聚类集成算法[J].自动化学报,2012,38(8):1335-1342. ZHOU Lin, PING Xi-Jian, XU Sen, et al. Cluster ensemble based on spectral clustering[J]. Acta Automatica Sinica, 2012, 38(8): 1335-1342.
[6] BACH F R, JORDAN M I. Learning spectral clustering[J]. Advances in Neural Information Processing Systems, 2004, 16(2): 1-13.
[7] PEIYUAN C, PEDERSEN T, BAK J B, et al. ARIMA-based time series model of stochastic wind power generation [J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
[8] LOUKA P, GALANIS G, SIEBERT N, et al. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2348-2362.
[9] 范高峰,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE, 2008, 28(34): 118-123.
[10] 江岳春,张丙江,邢方方,等.基于混沌时间序列GA-VNN模型的超短期风功率多步预测[J].电网技术,2015,39(8):2160-2166. JIANG Yue-chun, ZHANG Bing-jiang, XING Fang-fang, et al. Super-short-term multi-step prediction of wind power based on GA-VNN model of chaotic time series[J]. Power System Technology, 2015, 39(8): 2160-2166.
[11] 杨琦,张建华,王向峰,等.基于小波-神经网络的风速及风力发电量预测[J].电网技术,2009,33(17):44-48. YANG Qi, ZHANG Jian-hua, WANG Xiang-feng, et al. Wind speed and generated wind power forecast based on wavelet-neural network[J]. Power System Technology, 2009, 33(17): 44-48.
[12] 严欢,卢继平,覃俏云,等.基于多属性决策和支持向量机的风电功率非线性组合预测[J].电力系统自动化,2013,37(10):29-34. YAN Huan, LU Ji-ping, QIN Qiao-yun, et al. A nonlinear combined model for wind power forecasting based on multi-attribute decision-making and support vector machine[J]. Automation of Electric Power Systems, 2013, 37(10): 29-34.
[13] 谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报, 2006,26(22):17-22. XIE Hong, WEI Jiang-ping, LIU He-li. Parameter selection and optimization method of SVM model for short-term load forecasting[J]. Proceedings of the CSEE, 2006, 26(22): 17-22.
[14] 肖白,聂鹏,穆钢,等.基于多级聚类分析和支持向量机的空间负荷预测方法[J].电力系统自动化,2015,39(12):56-61. XIAO Bai, NIE Peng, MU Gang, et al. A spatial load forecasting method based on multilevel clustering analysis and support vector machine[J]. Automation of Electric Power Systems, 2015, 39(12): 56-61.
[15] 高昆仑,刘建明,徐茹枝,等.基于支持向量机和粒子群算法的信息网络安全态势复合预测模型[J].电网技术,2011,35(4):176-182. GAO Kun-lun, LIU Jian-ming, XU Ru-zhi, et al. A hybrid security situation prediction model for information network based on support vector machine and particle swarm optimization[J]. Power System Technology, 2011, 35(4): 176-182.
[16] ZHANG W, NIU P, LI G, et al. Forecasting of turbine heat rate with online least squares support vector machine based on gravitational search algorithm[J]. Knowledge-Based Systems, 2013, 39(2): 34-44.
[17] KUANG W, YANG Z, LING W K, et al. Nonlinear and adaptive undecimated hierarchical multiresolution analysis for real valued discrete time signals via empirical mode decomposition approach[J]. Digital Signal Processing, 2015, 45(10): 36-54.
[18] 蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. CAI Xiao-yan, DAI Guan-zhong, YANG Li-bin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7): 14-18.
[19] 荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11): 3204-3208. RONG Hai-na, ZHANG Ge-xiang, JIN Wei-dong. Selection of kernel functions and parameters for support vector machines in system identification[J]. Journal of System Simulation, 2006, 18(11): 3204-3208.
[20] MOHANDES M A, HALAWANI T O, REHMAN S, et al. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004, 29(6): 939-947.
[21] 刘刚,彭春华,相龙阳.采用改进型多目标粒子群算法的电力系统环境经济调度[J].电网技术,2011,35(7): 139-144. LIU Gang, PENG Chun-hua, XIANG Long-yang. Economic-environmental dispatch using improved multi-objective particle swarm optimization[J]. Power System Technology, 2011, 35(7): 139-144.
[22] RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm[J]. Information Science, 2009, 179(13): 2232-2248.
[23] 李志刚,吴文传,张伯明,等.一种基于高斯罚函数的大规模无功优化离散变量处理方法[J].中国电机工程学报,2013,33(4):68-76. LI Zhi-gang, WU Wen-chuan, ZHANG Bo-ming, et al. A large-scale reactive power optimization method based on Gaussian penalty function with discrete control variables[J]. Proceedings of the CSEE, 2013, 33(4): 68-76.
[24] 王贺,胡志坚,陈珍,等.基于集合经验模态分解和最小二乘向量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245. WANG He, HU Zhi-jian, CHEN Zhen, et al. A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 237-245.
[1] 纪超,王亮,王孝敬,李小兵,曹雯. 基于MSSA-SVM的电缆隧道故障预警系统设计[J]. 工程设计学报, 2023, 30(1): 109-116.
[2] 刘洪江,胡腾,何勇,董峰,罗为. 基于CSO-SVM的数控机床主轴热误差建模[J]. 工程设计学报, 2022, 29(3): 339-346.
[3] 肖圳, 何彦, 李育锋, 吴鹏程, 刘德高, 杜江. 改进MDSMOTEPSO-SVM在汽车组合仪表分类预测中的应用[J]. 工程设计学报, 2022, 29(1): 20-27.
[4] 郑华林, 王超, 潘盛湖, 高炜祥. 基于EEMD和分层阈值的磁记忆信号降噪方法研究[J]. 工程设计学报, 2020, 27(4): 433-440.
[5] 刘羽嘉, 潘滨, 李东泽, 李凤迪, 张迁, 孙丰刚, 兰鹏. 民宿无人值守智能管理系统设计与实现[J]. 工程设计学报, 2020, 27(3): 389-397.
[6] 李成兵, 叶超, 毛熙皓. 改进人工蜂群算法优化的LSSVM在混合气体定量分析中的应用[J]. 工程设计学报, 2020, 27(1): 94-102.
[7] 卢万杰, 付华, 赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报, 2019, 26(5): 527-533.
[8] 马天兵, 王孝东, 杜菲, 王鑫泉. 基于GA-SVM的刚性罐道故障诊断[J]. 工程设计学报, 2019, 26(2): 170-176.
[9] 李占福, 童昕. 基于AFSA-SimpleMKL对振动筛建模及筛机优化[J]. 工程设计学报, 2016, 23(2): 181-187.
[10] 郑严, 程文明, 程跃, 吴晓. 基于支持向量机的非概率可靠性分析[J]. 工程设计学报, 2011, 18(5): 327-331.
[11] 陈笑然, 章林柯, 阎兆立, 陈 杰, 程晓斌. 基于主动超声的轴流水泵空化监测方法研究[J]. 工程设计学报, 2011, 18(3): 214-217.
[12] 杨克己, 方文平, 乔华伟, 黄一春. 基于复小波变换和支持向量机的缺陷类型识别[J]. 工程设计学报, 2008, 15(3): 182-186.
[13] 许葆华, 李洪儒. 某型导弹发射装置液压元件故障的预测[J]. 工程设计学报, 2007, 14(6): 449-452.