| 
					
						| 
								
									| 优化设计 |  |     |  |  
    					|  |  
    					| 转盘式多足仿生机器人的运动学分析及优化 |  
						| 张春燕1(  ),丁兵1,何志强2,杨杰1 |  
					| 1.上海工程技术大学 机械与汽车工程学院,上海 201600 2.厦门ABB开关有限公司,福建 厦门 361000
 |  
						|  |  
    					| Kinematics analysis and optimization of rotary multi-legged bionic robot |  
						| Chun-yan ZHANG1(  ),Bing DING1,Zhi-qiang HE2,Jie YANG1 |  
						| 1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China 2.Xiamen ABB Switchgear Co. , Ltd. , Xiamen 361000, China
 |  
					
						| 
								
									|  
          
          
            
             
												
												
												| 
												
												引用本文:
																																张春燕,丁兵,何志强,杨杰. 转盘式多足仿生机器人的运动学分析及优化[J]. 工程设计学报, 2022, 29(3): 327-338.	
																															 
																																Chun-yan ZHANG,Bing DING,Zhi-qiang HE,Jie YANG. Kinematics analysis and optimization of rotary multi-legged bionic robot[J]. Chinese Journal of Engineering Design, 2022, 29(3): 327-338.	
																															 链接本文: 
																																	
																	https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn.1006-754X.2022.00.041
																	   或   
																																
																https://www.zjujournals.com/gcsjxb/CN/Y2022/V29/I3/327
														    |  
            
									            
									                
																																															
																| 1 | 颜云辉,徐靖,陆志国,等.仿人服务机器人发展与研究现状[J].机器人,2017,39(4):551-564. doi:10.13973/j.cnki.robot.2017.0551 YAN Yun-hui, XU Jing, LU Zhi-guo, et al. Development and research status of humanoid service robots[J]. Robot, 2017, 39(4): 551-564.
 doi: 10.13973/j.cnki.robot.2017.0551
 |  
																| 2 | 臧红彬.一种新型的多足仿生机器人的机构设计与研究[J].机械设计与制造,2010(8):103-105. doi:10.3969/j.issn.1001-3997.2010.08.042 ZANG Hong-bin. A new design of bionic multilegged robot mechanical[J]. Machinery Design & Manufacture, 2010(8): 103-105.
 doi: 10.3969/j.issn.1001-3997.2010.08.042
 |  
																| 3 | KOLTER J Z, NG A Y. The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion[J]. International Journal of Robotics Research, 2011, 30(2): 150-174. doi:10.1177/0278364910390537 doi: 10.1177/0278364910390537
 |  
																| 4 | 徐林森,梅涛,宦娟,等.双足机器人水上行走机理研究及推进机构设计[J].机器人,2013,35(3):257-262. doi:10.3724/SP.J.1218.2013.00257 XU Lin-sen, MEI Tao, HUAN Juan, et al. Research on dynamical mechanism and propulsion system of a biped robot walking on water[J]. Robot, 2013, 35(3): 257-262.
 doi: 10.3724/SP.J.1218.2013.00257
 |  
																| 5 | RUBIO F, VALERO F, LLOPIS-ALBERT C. A review of mobile robots: concepts, methods, theoretical framework, and applications[J]. International Journal of Advanced Robotic Systems, 2019, 16(2): 172988141983959. doi:10.1177/1729881419839596 doi: 10.1177/1729881419839596
 |  
																| 6 | BISWAL P, MOHANTY P K. Development of quadruped walking robots: a review[J]. Ain Shams Engineering Journal, 2021, 12(2): 2017-2031. doi:10.1016/j.asej.2020.11.005 doi: 10.1016/j.asej.2020.11.005
 |  
																| 7 | JAMES P M, PRAKASH A, KALBURGI V, et al. Design, analysis, manufacturing of four-legged walking robot with insect type leg[J]. Materials Today: Proceedings, 2021, 46: 4647-4652. doi:10.1016/j.matpr.2020.10.286 doi: 10.1016/j.matpr.2020.10.286
 |  
																| 8 | LUNECKAS M, LUNECKAS T, UDRIS D, et al. A hybrid tactile sensor-based obstacle overcoming method for hexapod walking robots[J]. Intelligent Service Robotics, 2021, 14(1): 9-24. doi:10.1007/s11370-020-00340-9 doi: 10.1007/s11370-020-00340-9
 |  
																| 9 | 倪聪,杨崇倡,刘香玉,等.基于Klann连杆的球腿复合机器人的设计与研究[J].机器人,2020,42(4):436-447. doi:10.13973/j.cnki.robot.190513 NI Cong, YANG Chong-chang, LIU Xiang-yu, et al. Design and research on a ball-legged compound robot based on Klann linkage[J]. Robot, 2020, 42(4): 436-447.
 doi: 10.13973/j.cnki.robot.190513
 |  
																| 10 | RAIBERT M, BLANKESPOOR K, NELSON G, et al. BigDog, the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes, 2008, 41(2): 10822-10825. doi:10.3182/20080706-5-kr-1001.01833 doi: 10.3182/20080706-5-kr-1001.01833
 |  
																| 11 | 张秀丽.四足机器人节律运动及环境适应性的生物控制研究[D].北京:清华大学,2004:63-98. ZHANG Xiu-li. Biological-inspired rhythmic motion & environmental adaptability for quadruped robot[D]. Beijing: Tsinghua University, 2004: 63-98.
 |  
																| 12 | 黄博,王鹏飞,孙立宁.基于行为模式的复合运动方式四足机器人研究[J].中国机械工程,2007,18(18):2159-2162. doi:10.3321/j.issn:1004-132x.2007.18.005 HUANG Bo, WANG Peng-fei, SUN Li-ning. Research on a hybrid quadruped robot based on behaviour architecture[J]. China Mechanical Engineering, 2007, 18(18): 2159-2162.
 doi: 10.3321/j.issn:1004-132x.2007.18.005
 |  
																| 13 | 陈甫,臧希喆,闫继宏,等.适合航行的六足仿生机器人Spider的研制[J].吉林大学学报(工学版),2011,41(3):765-770. CHEN Fu, ZANG Xi-zhe, YAN Ji-hong, et al. Development of navigable hexapod biomimetic robot Spider[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(3): 765-770.
 |  
																| 14 | PAN Yang, GAO Feng, QI Chen-kun, et al. Human tracking strategies for a six-legged rescue robot based on distance and view[J]. Chinese Journal of Mechanical Engineering, 2016, 29(2): 219-230. doi:10.3901/cjme. 2015.1212.146 doi: 10.3901/cjme. 2015.1212.146
 |  
																| 15 | XU Yi-lin, GAO Feng, PAN Yang, et al. Method for six-legged robot stepping on obstacles by indirect force estimation[J]. Chinese Journal of Mechanical Engineering, 2016, 29(4): 669-679. doi:10.3901/cjme.2016.0122.012 doi: 10.3901/cjme.2016.0122.012
 |  
																| 16 | KOMODA K, WAGATSUMA H. Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms[J]. Multibody System Dynamics, 2017, 40(2): 123-153. doi:10.1007/s11044-016-9532-9 doi: 10.1007/s11044-016-9532-9
 |  
																| 17 | NANSAI S, ELARA M R, IWASE M. Dynamic analysis and modeling of Jansen mechanism[J]. Procedia Engineering, 2013, 64: 1562-1571. doi:10.1016/j.proeng. 2013.09.238 doi: 10.1016/j.proeng. 2013.09.238
 |  
																| 18 | PATNAIK L, UMANAND L. Kinematics and dynamics of Jansen leg mechanism: a bond graph approach[J]. Simulation Modelling Practice and Theory, 2016, 60: 160-169. doi:10.1016/j.simpat.2015.10.003 doi: 10.1016/j.simpat.2015.10.003
 |  
																| 19 | 黄真,赵永生,赵铁石.高等空间机构学[M].2版.北京:高等教育出版社,2014:28-87. HUANG Zhen, ZHAO Yong-sheng, ZHAO Tie-shi. Advanced spatial mechanism[M]. 2nd ed. Beijing: Higher Education Press, 2014: 28-87.
 |  
																| 20 | 韩建友,杨通,尹来容,等.连杆机构现代综合理论与方法[M].北京:高等教育出版社,2013:36-90. HAN Jian-you, YANG Tong, YIN Lai-rong, et al. Modern comprehensive theory and method of linkage mechanism[M]. Beijing: Higher Education Press, 2013: 36-90.
 |  
																| 21 | 柏龙,龙樟,陈晓红,等.连续电驱动四足机器人腿部机构设计与分析[J].机器人,2018,40(2):136-145. doi:10.13973/j.cnki.robot.170443 BAI Long, LONG Zhang, CHEN Xiao-hong, et al. Design and analysis of a leg mechanism for a continuous electrically-driven quadruped robot[J]. Robot, 2018, 40(2): 136-145.
 doi: 10.13973/j.cnki.robot.170443
 |  
																| 22 | 陈耀,周建军,胡涛.单自由度腿部机构的四足机器人稳定性研究[J].机械与电子,2015(2):65-69. doi:10.3969/j.issn.1001-2257.2015.02.018 CHEN Yao, ZHOU Jian-jun, HU Tao. Stability analysis of a 1-DOF leg for quadruped robot[J]. Machinery & Electronics, 2015(2): 65-69.
 doi: 10.3969/j.issn.1001-2257.2015.02.018
 |  
																| 23 | NANSAI S, ROJAS N, ELARA M R, et al. A novel approach to gait synchronization and transition for reconfigurable walking platforms[J]. Digital Communications and Networks, 2015, 1(2): 141-151. doi:10.1016/j.dcan. 2015.04.003 doi: 10.1016/j.dcan. 2015.04.003
 |  
																| 24 | ERDEN M S, LEBLEBICIOGLU K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics and Autonomous System, 2008, 56(3): 199-212. doi:10.1016/j.robot.2007.08.001 doi: 10.1016/j.robot.2007.08.001
 |  
																| 25 | IJSPEERT A J. Biorobotics: using robots to emulate and investigate agile locomotion[J]. Science, 2014, 346(6206): 196-203. doi:10.1126/science.1254486 doi: 10.1126/science.1254486
 |  
																| 26 | 李奇敏,任灏宇,蒲文东,等.具有弹性连杆机构的四足机器人对角小跑步态控制[J].机器人,2019,41(2):197-205. doi:10.13973/j.cnki.robot.180185 LI Qi-min, REN Hao-yu, PU Wen-dong, et al. Trotting gait control of the quadruped robot with an elastic linkage[J]. Robot, 2019, 41(2): 197-205.
 doi: 10.13973/j.cnki.robot.180185
 |  
																| 27 | 徐蔚青,严惠,张吴晖.基于Klann机构的多足连杆步行机器人的仿真优化[J].机械设计,2018,35(5):25-29. doi:10.13841/j.cnki.jxsj.2018.05.005 XU Wei-qing, YAN Hui, ZHANG Wu-hui. Simulation-based optimization on multi-legged walking robot based on Klann mechanism[J]. Journal of Machine Design, 2018, 35(5): 25-29.
 doi: 10.13841/j.cnki.jxsj.2018.05.005
 |  
																| 28 | 臧红彬,沈连婠.Theo Jansen仿生腿研究及其机构优化设计[J].机械工程学报,2017,53(15):101-109. doi:10.3901/JME.2017.15.101 ZANG Hong-bin, SHEN Lian-wan. Research and optimization design of mechanism for Theo Jansen bionic leg[J]. Journal of Mechanical Engineering, 2017, 53(15): 101-109.
 doi: 10.3901/JME.2017.15.101
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |